CONTENTS

1 Reinforcement Learning
1.1 Definitions
1.2 Bellman Equations . .
1.3 Dynamic Programming

1 REINFORCEMENT LEARNING

1.1 DEFINITIONS

define u?

1.2 BELLMAN EQUATIONS

Definition 1 (Value function). A value function maps states to a policy’s expected return from that
point. A state-value function (Q function) does the same, but with state-action pairs.

VT(s) :=Ex (u'| s" =)

Q" (s,a) :=E, (ut | s' =a,a" = a)

Note V(s) = Equr (Q7(5,-) = ¥, 7(al$)Q" (s, a).

A policy * is optimal if its value functions are optimal:
V*(s) = max V" (s) forall s

Q" (s,a) = max Q" (s, a) forall, s, a.

Both V™ and Q7 can be rewritten recursively, and in that form are called the Bellman equations. By
expanding u’ = 7! +~yu'*! and applying the law of total expectation over states s' ! yields the following.

Proposition 1. Value and state-value functions satisfy the following Bellman equations:

V7™(s) = Z m(als)T(s'|s,a) (R(s,a,s") +yV7™(s')),

Q™(s) =) T(s's,a) (R(s,a,8') +7V7(s))

= 3 T(s']s,a) <R<s,a7s’> + VZW(a’Is)Q“(S’,a’)> .

Consider the system of equations given by the Bellman equation for V™ (s;) foreach s; € S. This
system of | S| equations can be solved by any usual linear system solver, e.g. Gaussian elimination.

We can make the Bellman equations express how optimal value functions behave by introducting a
max term (which also makes them nonlinear).

Note 1 (Bellman optimality equations).

V*(s) = m;ixz T(s'|s,a) (R(s,a,s") +~vV*(s)),

@ (5.0) = ¥ 7100 (Rl 005 9 man@ (5,0).

13 DYNAMIC PROGRAMMING

The DP approach to computing an optimal policy is to calculate V™ (s) for all states, then back out an
optimal policy by always moving to the value-maximizing next state.
There are two main types:

* Policy iteration: switch between policy evaluation & policy improvement, producing a sequence
= Visal s Vi s SV

* Value iteration: directly measure a value function and back out an optimal policy at the end, pro-
ducing a sequence
| e 7

In policy iteration, given a policy 7, we could use Gaussian elimination on the system of Bellman equa-
tions to calculate V™ (s) forall s € S, but this is O(|S|). And in the case of value iteration, the system of
Bellman optimality equations is nonlinear anyway.

Instead, we use bootstrapping to recursively back out a value function. For policy iteration, fix 7,
then we can compute V™ as the limit of the sequence VO 5 VI — ... defined by

Vi) Zw(a|s)T(s/|S,a) (R(s7a, s') + ’YVi(s’)) .

Definition 2. A (y)-contraction map on a complete metric space (X,d) isamap ¢ : X — X
such that

d(¢(x),¢(y)) < v d(z,y)

forallz,y € X, wherey € [0, 1) is constant.

Theorem 1 (Contraction Mapping Principle). A contraction map ¢ has a unique fixed point z*

that can be computed as the limit of successive applications of ¢ to an arbitrary starting point z°:
0 0 0 x
x” = P(z”) = p(Pp(z”)) — -+ = a.

Proof. See Marsden & Hoffman pg. 301. O

Proposition 2. For a fixed policy 7, the sequence { Vi} defined above converges to V7.

Proof. Consider the Bellman operator

¢V Zﬂ(a|5)T(s’\s, a) (R(s,a,s') +vV(s")).

This is a contraction map in the max norm, since for any value functions V, W,

[V = oW |, = max[(&V)(s) — (oW)(s)]

=ymax | T(s|s,a)m(als) (V(s) -~ W(s"))

<ymax Y T (s'|s,a)m(als) |V (s') = W(s)]
8 s',a
<AV = W max Yy T(']s,a)m(als)

The last line is because 3 _, , T(s'|s, a)m(als) = 1 forall s.

Then by the contraction mapping principle, there is a unique fixed point V' gotten by starting with an
arbitrary value function V° and repeatedly applying ¢. This fixed point satisfies the Bellman equation for
V'™ by construction, so it’s our desired V™. O

Note 2. The above proof shows that in the finite MDP setting, the Bellman equation for V™ has a
unique solution.

This gives us a method for policy evaluation (the step 7 — V%), but we still need to produce a better
policy i+,
Finish

	Reinforcement Learning
	Definitions
	Bellman Equations
	Dynamic Programming

