
C O N T E N T S

1 Reinforcement Learning 1
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Bellman Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2



1 R E I N F O R C E M E N T L E A R N I N G

1.1 D E F I N I T I O N S

define ut

1.2 B E L L M A N E Q U AT I O N S

Definition 1 (Value function). A value functionmaps states to a policy’s expected return from that
point. A state-value function (Q function) does the same, but with state-action pairs.

V π(s) := Eπ

(
ut | st = s

)
Qπ(s, a) := Eπ

(
ut | st = a, at = a

)
Note V π(s) = Ea∼π (Q

π(s, ·)) =
∑

a π(a|s)Qπ(s, a).

A policy π∗ is optimal if its value functions are optimal:

V ∗(s) = max
π

V π(s) for all s

Q∗(s, a) = max
π

Qπ(s, a) for all , s, a.

Both V π andQπ can be rewritten recursively, and in that form are called the Bellman equations. By
expandingut = rt+γut+1 and applying the law of total expectation over states st+1 yields the following.

Proposition 1. Value and state-value functions satisfy the following Bellman equations:

V π(s) =
∑
s′,a

π(a|s)T (s′|s, a) (R(s, a, s′) + γV π(s′)) ,

Qπ(s) =
∑
s′

T (s′|s, a) (R(s, a, s′) + γV π(s′))

=
∑
s′

T (s′|s, a)

(
R(s, a, s′) + γ

∑
a′

π(a′|s)Qπ(s′, a′)

)
.

1



Consider the system of equations given by the Bellman equation for V π(si) for each si ∈ S . This
system of |S| equations can be solved by any usual linear system solver, e.g. Gaussian elimination.

We can make the Bellman equations express how optimal value functions behave by introducting a
max term (which also makes them nonlinear).

Note 1 (Bellman optimality equations).

V ∗(s) = max
a

∑
s′

T (s′|s, a) (R(s, a, s′) + γV ∗(s)) ,

Q∗(s, a) =
∑
s′

T (s′|s, a)
(
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

)
.

1.3 D Y N A M I C P R O G R A MM I N G

The DP approach to computing an optimal policy is to calculate V π(s) for all states, then back out an
optimal policy by always moving to the value-maximizing next state.

There are two main types:

• Policy iteration: switch between policy evaluation & policy improvement, producing a sequence

π0 → V 0 → π1 → V 1 → · · · → π∗ → V ∗

• Value iteration: directly measure a value function and back out an optimal policy at the end, pro-
ducing a sequence

V 0 → V 1 → · · · → V ∗

In policy iteration, given a policyπ, we could useGaussian elimination on the system of Bellman equa-
tions to calculate V π(s) for all s ∈ S , but this isO(|S|). And in the case of value iteration, the system of
Bellman optimality equations is nonlinear anyway.

Instead, we use bootstrapping to recursively back out a value function. For policy iteration, fix π,
then we can compute V π as the limit of the sequence V 0 → V 1 → · · · defined by

V i+1(s) ←
∑
s′,a

π(a|s)T (s′|s, a)
(
R(s, a, s′) + γV i(s′)

)
.

Definition 2. A (γ)-contraction map on a complete metric space (X, d) is a map ϕ : X → X
such that

d(ϕ(x), ϕ(y)) ≤ γ d(x, y)

for all x, y ∈ X , where γ ∈ [0, 1) is constant.

Theorem 1 (Contraction Mapping Principle). A contraction map ϕ has a unique fixed point x∗



that can be computed as the limit of successive applications of ϕ to an arbitrary starting point x0:

x0 → ϕ(x0)→ ϕ(ϕ(x0))→ · · · → x∗.

Proof. See Marsden &Hoffman pg. 301.

Proposition 2. For a fixed policy π, the sequence
{
V i
}
defined above converges to V π .

Proof. Consider the Bellman operator

ϕ : V 7→
∑
s′,a

π(a|s)T (s′|s, a) (R(s, a, s′) + γV (s′)) .

This is a contraction map in the max norm, since for any value functions V,W ,

‖ϕV − ϕW‖∞ = max
s
|(ϕV )(s)− (ϕW )(s)|

= γmax
s

∣∣∣∣∣∣
∑
s′,a

T (s′|s, a)π(a|s) (V (s′)−W (s′))

∣∣∣∣∣∣
≤ γmax

s

∑
s′,a

T (s′|s, a)π(a|s) |V (s′)−W (s′)|

≤ γ‖V −W‖∞ max
s

∑
s′,a

T (s′|s, a)π(a|s)

= γ‖V −W‖∞.

The last line is because
∑

s′,a T (s′|s, a)π(a|s) = 1 for all s.
Then by the contractionmapping principle, there is a unique fixed point V gotten by starting with an

arbitrary value function V 0 and repeatedly applying ϕ. This fixed point satisfies the Bellman equation for
V π by construction, so it’s our desired V π .

Note 2. The above proof shows that in the finite MDP setting, the Bellman equation for V π has a
unique solution.

This gives us a method for policy evaluation (the step πi → V i), but we still need to produce a better
policy πi+1.

Finish


	Reinforcement Learning
	Definitions
	Bellman Equations
	Dynamic Programming


