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Chapter 1

Euclidean Topology

1.1 Metrics

Definition 1. A metric space (M, d) is a set M and a function d : M×M → R such
that

1. d(x, y) ≥ 0

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x)

4. d(x, y) ≤ d(x, z) + d(z, y)

Example 1. The discrete metric is defined d(x, y) = 1 if x 6= y, d(x, y) = 0 if x = y.
For any set S, (S, d) is a metric space.
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1.2 Open Sets

Definition 2. Let (M, d) be a metric space. For each fixed x ∈ M and ε > 0, the ε-ball
about x is

D(x, ε) = {y ∈ M | d(x, y) < ε} .

Definition 3. A set A ⊂ M is open if for every x ∈ A, there exists an ε > 0 such that
D(x, ε) ⊂ A. A neighborhood of x in M is an open set containing x.

Figure 1.1: A neighborhood U of x.

Proposition 1. In a metric space, every ε-ball D(x, ε) is open for ε > 0.

Proposition 2. In (M, d) with open sets Ui,

1.
⋂N

i=1 Ui is open

2.
⋃

α∈A Uα is open

3. ∅ and M are open

Example 2. Let Un =
(
− 1

n , 1
n

)
, then

⋂∞
n=1 Un = {0}, which is not open. Thus state-

ment (1) does not hold for arbitrary collections of open sets.

Definition 4. The interior of A ⊂ (M, d) is the union of all open subsets of A.
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A point a ∈ A is an interior point of A if there’s a neighborhood of a contained in A.
Then Ao is all the interior points of A.

Since Ao is open, Ao is the largest open subset of A. Thus if A has no open subsets, then
Ao = ∅. Furthermore, if A is open, then Ao = A.
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1.3 Closed Sets

Definition 5. A set B in a metric space M is said to be closed if its complement
Bc = M\B is open.

It’s possible for a set to be neither open nor closed (consider (0, 1] ∈ R).

Proposition 3. In (M, d) with open sets Ci,

1.
⋃N

i=1 Uα is closed

2.
⋂

α∈A Cα is closed

3. ∅ and M are closed

Proof. These follow from DeMorgan’s Laws and the corresponding properties of open
sets.

Example 3. Any finite set in Rn is closed since it is the union of finitely many single
points, which themselves are closed sets.

Example 4. Let

Fn =

[
1
n

, 1− 1
n

]
.

The union
⋃∞

j=1 Fj = (0, 1), so the union of an arbitrary collection of closed sets is not
necessarily closed.
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1.4 Accumulation Points

Definition 6. A point x ∈ M is an accumulation point of A ⊂ M if neighborhood U
of x intersects A at a point other than x. The set of accumulation points of A is denoted
by acc(A).

Other points of A get arbitrarily close to x if x is an accumulation point. This means
there are infinitely many points of A that are close to x.

An accumulation point of a set doesn’t need to be in the set itself. A set also doesn’t need
to have any accumulation points in the first place.

Figure 1.2: A few accumulation points of a set.

Example 5. Discrete metric spaces have no accumulation points.

Proposition 4. Every point in Ao is an accumulation point of A ⊂ Rn.

Proof. Let x ∈ Ao, then there exists ε > 0 such that D(x, ε) ⊂ Ao ⊂ A. Then (D(x, ε)\{x})∩
A is nonempty.

Proposition 5. A ⊂ (M, d) is closed if and only if the accumulation points of A belong
to A.

If a set has no accumulation points, then it satisfies this condition and is thus closed.

Definition 7. Let A ⊂ (M, d), then the closure A of A is the intersection of all closed
sets containing A.
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Proposition 6. For A ⊂ M, Ā = A ∪ acc(A).

Definition 8. The boundary of A ⊂ (M, d) is ∂A = A ∩ Ac.

The union of 2 closed sets is closed, so ∂A is closed. Note ∂A = ∂Ac.

Proposition 7. Let A ⊂ M, then x ∈ ∂A if and only if for all ε > 0, D(x, ε) contains
points of A and Ac (these points might include x itself).

Example 6. 1. Let A = (0, 1), then A = [0, 1] and Ac = (−∞, 0] ∪ [1, ∞). Then
∂A = {0, 1}.

2. Let A = Q, then A = R. Ac = R\Q, so Ac = R. Thus ∂Q = R.
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1.5 Compactness

Definition 9. Covercover A cover of A ⊂ (M, d) is a collection {Ui} of sets whose
union contains A. It is an open cover if each Ui is open (in which case the union is
always also open). A subcover of a given cover is a subcollection of {Ui} that covers
A.

Definition 10. A ⊂ (M, d) is compact if every open cover of A has a finite subcover.

Proposition 8. Compact sets are closed and bounded.

Proposition 9. Closed subsets of compact sets are closed.

Definition 11. A ⊂ (M, d) is sequentially compact if every sequence in A has a
subsequence that converges to a point in A.

Theorem 1 (Bolzano-Weierstrass). A ⊂ (M, d) is compact if and only if A is sequentially
compact.

Definition 12. A is totally bounded if for every ε > 0, there is a finite set

{x1, . . . , xN(ε)} ⊂ M

such that

A ⊂
N(ε)⋃
i=1

D(xi, ε).

Proposition 10. Sequentially compact sets are totally bounded.

Theorem 2. (M, d) is compact if and only if M is complete and bounded. Similarly, A ⊂
(M, d) is compact if and only if A is closed and bounded.
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Theorem 3 (Heine-Borel). A ⊂ Rn is compact if and only if it is closed and bounded.

Theorem 4 (Nested Set Property). Let {Fk} be a sequence of compact nonempty sets in a
metric space M such that Fk+1 ⊂ Fk, then their intersection is nonempty, i.e.

∞⋂
k=1

Fk 6= ∅.

This can be inverted in a sense. Let Ak = Fc
k , then each Uk is open and Uk+1 ⊃ Uk. Then

∪∞
k=1Uk 6= M. Thus if M is a metric space and the open sets Uk are increasing and have

compact complements, then the union of all the Uk’s is not all of M.

Figure 1.3: As long as each Ki is compact, x is guaranteed to exist
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1.6 Connectedness

Definition 13. A map φ : [a, b] → M is continuous if tk → t implies φ(tk) → φ(t) for
every sequence {tk} ⊂ [a, b] converging to some t ∈ [a, b].

Definition 14. A path joining two points x and y in M is a continuous map φ : [a, b]→
M such that φ(a) = x, φ(b) = y. A set is path-connected if every two points in the set
can be joined by a path lying in the set.

A path-connected set need not be open or closed. Consider [0, 1], (0, 1), and [0, 1), which
are all connected.

Definition 15. Let A ⊂ (M, d), then two open sets U, V separate A if

1. U ∩V ∩ A = ∅,

2. A ∩U 6= ∅,

3. A ∩V 6= ∅, and

4. A ⊂ U ∪V.

A is disconnected if such sets exist, and it is connected if no such sets exist.

Figure 1.4: A disconnected set.

Proposition 11. [a, b] is connected.
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Theorem 5. Path-connected sets are connected.

Definition 16. A component of a set A is a maximal connected subset of A. A path
component is a maximal path-connected subset of A.



Chapter 2

Sequences and Series

2.1 Sequences and Limits

Definition 17. A function f : N → S is a sequence in S. A subsequence in S is a
function f ◦ σ, where σ : N ↪→N is injective and increasing.

Definition 18. A sequence {xn}∞
n=1 ⊂ (M, d) converges to L ∈ M if for every neigh-

borhood U of L, there exists N such that xn ∈ U when n > N.

Proposition 12 (Squeeze Lemma). If xn → L and zn → L and xn ≤ yn ≤ zn for any
n > n0, then yn → L.

Proposition 13. Limits are unique in an Archimedean field.

Theorem 6. Let xn → x and yn → y, then

1. xn + yn → x + y

2. λxn → λx

3. xnyn → xy

4. yn 6= 0, y 6= 0 =⇒ xny−1
n → xy−1

11
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Definition 19. Let F be an ordered field. We say that F has the Monotone Sequence
Property if every monotone nondecreasing sequence bounded above converges. An
ordered field is complete if it has the Monotone Sequence Property.

Complete ordered fields are Archimedean.

Example 7. For the discrete metric, a sequence {xn} converges if and only if it is
eventually constant.

Proposition 14. F ⊂ (M, d) is closed if an only if for all sequences in F that converge
to a point in M, that point is also in F.

Proposition 15. For a set A ⊂ (M, d), x ∈ A if and only if there is a sequence xk ∈ A
with xk → x.

Example 8. Consider the open interval (0, 1) with the usual metric. The sequence
{1/n} does not converge in this metric space since 0 6∈ M.

Proposition 16. vk → v in Rn if and only if each sequence of coordinates converges to
the corresponding coordinate of v as a sequence in R.
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2.2 Infimums and Supremums

Definition 20. The supremum of a set S ⊂ R is the least upper bound of S, and the
infimum is the greatest upper bound.

Least upper bounds are unique. If b is an upper bound of S and b ∈ S, then b is the least
upper bound.

Proposition 17. Let S ⊂ R be nonempty. Then b ∈ R is the least upper bound of B if
and only if b is an upper bound of S and for every ε > 0 there is an x ∈ S such that
x > b− ε.

Proposition 18. Let A ⊂ B ⊂ R, then inf B ≤ inf A ≤ sup A ≤ sup B.

Theorem 7. In R the following hold

1. Least upper bound property: Let S ⊂ R be non-empty and have an upper bound, then S
also has a least upper bound.

2. Greatest lower bound property: Let S ⊂ R be non-empty and have a lower bound, then S
also has a greatest lower bound.

This theorem is equivalent to the completeness axiom for ordered fields.
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2.3 Limit Inferiors and Limit Superiors

Definition 21. Let {xn}∞
n=1 ⊂ R be bounded above, then we define the limit superior

to be
L = lim xj = lim supj→∞xj.

Similarly, define the limit inferior to be

lim xj = lim infj→∞xj.

The limit inferior need not be the infimum, and the limit supremum need not be the
supremum. The limit inferior is the limit of the infimums if we keep removing elements
from the beginning of the sequence, and the limit superior is the limit of the supremums.

Proposition 19. Let {xn} be a sequence in R.

1. If {xn} is bounded below, a number a is equal to the limit inferior if and only if

(a) For all ε > 0, there exists N such that a− ε < xn when n > N, and

(b) For all ε > 0 and for all M, there exists n > M with xn < a + ε.

2. If {xn} is bounded above, a number b is equal to the limit superior if and only if

(a) For all ε > 0, there exists N such that xn < b + ε when n > N, and

(b) For all ε > 0 and for all M, there exists n > M with b− ε < xn.
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2.4 Cauchy Sequences

Definition 22. The sequence {xn} ⊂ (M, d) is a Cauchy sequence if for all ε > 0, there
exists N such that if n, m > N, then d(xn, xm) < ε.

Definition 23. A metric space (M, d) is complete if every Cauchy sequence in M
converges.

Example 9. 1. Rn is complete.

2. Any discrete metric space is complete.

Definition 24. A ⊂ (M, d) is bounded if there exists some p ∈ M and R > 0 such that
A ⊂ D(p, R).

Figure 2.1: A bounded set

Proposition 20. A convergent sequence in a metric space is bounded.

Proposition 21. 1. Every convergent sequence in a metric space is a Cauchy se-
quence.

2. A Cauchy sequence in a metric space is bounded.



Braden Hoagland Real Analysis | 16

3. If a subsequence of a Cauchy sequence converges to x, then the sequence con-
verges to x.

Theorem 8. A sequence {xk} ⊂ Rn converges to a point in Rn if and only if it is a Cauchy
sequence.

Theorem 9 (Bolzano-Weierstrass Property). Every bounded sequence in R has a subse-
quence that converges to some point in R.

Thus a sequence of points in [a, b] has a subsequence that converges to a point in [a, b].

Theorem 10. Every Cauchy sequence in R converges to an element of R.

Proof. Every Cauchy sequence is bounded, so by the Bolzano-Weierstrass property, every
Cauchy sequence has a subsequence that converges to some point in R. But if a subsequence
of a Cauchy sequence converges to a point, then the sequence itself converges to that point.
Thus every Cauchy sequence converges to a point in R.
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2.5 The Real Numbers

Theorem 11. There’s a unique (up to isomorphism) complete ordered field called the real
number system. It is constructed as follows: Let S be defined

S = {(x1, x2, . . . )|xn ∈ Q, sequence is increasing and bounded above}

and let two members of S be equivalent if their upper bounds are the same. Then R is the set of
all equivalence classes in S. We do not include ±∞ in R.

Proposition 22. Q is dense in R.

Although Q is dense in R, there are actually many more irrationals than rationals.

Proposition 23. The interval (0, 1) in R is uncountable.

Since the function f (x) = a + (b− a)x maps ]0, 1[ 7→]a, b[, any interval in R is uncount-
able. Since R is uncountable but Q is countable, it must be the case that C is uncountable.



Braden Hoagland Real Analysis | 18

2.6 Norms and Inner Products

Definition 25. A normed vector space (V , ‖·‖) is a vector space V and a function
‖·‖ : V → R such that

1. ‖v‖ ≥ 0

2. ‖v‖ = 0 ⇐⇒ v = 0

3. ‖λv‖ = |λ|‖v‖

4. ‖v + w‖ ≤ ‖v‖+ ‖w‖

Proposition 24. If (V , ‖·‖) is a normed vector space and {vk} , {wk} ⊂ V such that
vk → v and wk → w, and if {λk} ⊂ R such that λk → λ, then

1. vk + wk → v + w

2. λkvk → λv

Thus wk → w ⇐⇒ wk − w→ 0 for all sequences in normed vector spaces.
Norms always produce metrics, since we can define a metric d(v, w) = ‖v− w‖ on any

normed vector space; however, not all metrics (e.g. discrete or bounded metrics) can be
produced from norms.

Definition 26. An inner product space is a real vector space V with a function 〈·, ·〉 :
V × V → R such that

1. 〈v, v〉 ≥ 0

2. 〈v, v〉 = 0 ⇐⇒ v = 0

3. 〈λv, w〉 = λ 〈v, w〉 for all λ ∈ R

4. 〈v, w + u〉 = 〈v, w〉+ 〈v, u〉

5. 〈v, w〉 = 〈v, w〉

Inner products always produce norms, since on any inner product space we can define a
norm ‖v‖ =

√
〈v, v〉.

Two useful identities that aren’t hard to prove:

1. 〈λv + µw, u〉 = λ 〈v, u〉+ µ 〈w, u〉

2. 〈0, w〉 = 〈w, 0〉 = 0
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Proposition 25 (Cauchy-Schwarz Inequality). If (V , 〈·, ·〉) is an inner product space,
then we have | 〈v, w〉 | ≤

√
〈v, v〉

√
〈w, w〉 for all v, w ∈ V .

Proposition 26 (Triangle Inequality). ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.

Proof. Cauchy-Schwarz gives

‖x + y‖2 = ‖x‖2 + 2 〈x, y〉+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= ‖x‖2 + ‖y‖2.
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2.7 Euclidean Space

Theorem 12. Euclidean n-space with addition and scalar multiplication is a vector space of
dimension n.

The norm of x ∈ Rn is defined

|x| =
(

n

∑
i=1

x2
i

)1/2

.

The distance between x and y is defined d(x, y) = |x− y|. The inner product is defined
〈x, y〉 = ∑n

i=1 xiyi. Note that |x|2 = 〈x, x〉.

Proposition 27. Let v, w ∈ Rn, and let

ρ(v, w) = max {|v1 − w1|, |v2 − w2|, . . . , |vn − wn|} .

Then
ρ(v, w) ≤ ‖v− w‖ ≤

√
n ρ(v, w)
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2.8 Series in Normed Vector Spaces

Let (V , | · |) be a normed vector space and let {xi}∞
i=1 ⊂ V . Set Sn

.
= ∑n

i=1 xi. If Sn → L, we
say ∑∞

i=1 xi is convergent and ∑∞
i=1 xi = L. If {Sn} does not converge, we say ∑∞

i=1 xi does
not converge.

If V = R, we say Si → ∞ if for all M, there exists N such that if n > N, then Sn > M. If
Si → ±∞, we say ∑∞

i=1 xi = ±∞ (respectively).

Definition 27. A Banach space is a complete normed vector space. A Hilbert space is
a complete inner product space.

Theorem 13. Let V be a complete normed vector space. A series ∑ xk converges if and only if
for every ε > 0, there is an N such that k > N implies

‖xk + xk+1 + · · ·+ xk+p‖ < ε

for all integers p = 0, 1, 2, . . .

Proof. Let sk = ∑k
i=1 xk. Since V is complete, a {sk} converges if and only if it is a Cauchy

sequence. This is true if and only if there is an N such that l > N implies ‖sl − sl+q‖ < ε

for all q = 1, 2, . . . . But ‖sl − sl+q‖ = ‖xl+1 + · · ·+ xl+q‖, and so the result follows with
k = l + 1 and p = q− 1.

Theorem 14. In a complete normed vector space, if ∑ xk converges absolutely, then ∑ xk

converges.

Proof. This follows from the previous theorem and the triangle inequality

‖xk + · · ·+ xk+p‖ ≤ ‖xk‖+ · · ·+ ‖xk+p‖.



Chapter 3

Continuity, Differentiation, and
Integration

3.1 Continuity

Definition 28. Let f : A ⊂ M1 → M2. Suppose that x0 is an accumulation point of A,
then b ∈ M2 is the limit of f at x0

lim
x→x0

f (x) = b

if given any ε > 0, there exists δ > 0 such that for all x ∈ A satisfying x0 6= x and
d1(x, x0) < δ, we have d2( f (x), b)) < ε.

Equivalently, there exists δ > 0 such that f (D(x0, δ)\ {x0}) ⊂ D(L, ε).

The limit of a function at any given point need not exist, but when it does exist, it is
unique.

Definition 29. Let A ⊂ M1, f : A → M2, and x0 ∈ A. We say that f is continuous at
x0 if either x0 is not an accumulation point of A or limx→x0 f (x) = f (x0).

Theorem 15. Let f : A ⊂ M1 → M2, then the following are equivalent.

1. f is continuous at every point of A.

2. For every convergent sequence xk → x in A, we have f (xk)→ f (x).

3. For every open set U ⊂ M2, f−1(U) is open in M1.

4. For every closed set F ⊂ M2, f−1(F) is closed in M1.

22
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Figure 3.1: A continuous function f .

Theorem 16. The continuous image of a (path) connected set is (path) connected. The contin-
uous image of a compact set is compact.

Theorem 17 (Maximum-Minimum Theorem). Let A ⊂ (M, d) be compact and suppose
f : A→ R is continuous. Then f is bounded on K and attains its infimum and supremum on
K.

Proof. Since K is compact and f is continuous, f (K) is compact, so it is also closed and
bounded. Since it’s closed, it contains its accumulation points. Its infimum and supremem
are either in the set or accumulation points, so they must lie in f (K).

Proposition 28. Compositions of continuous functions are continuous.

Proposition 29. If (M, d) is a metric space, V is a normed vector space, and f : M→ V ,
g : M→ V , and h : M→ R are continuous, then

1. f + g is continuous, and

2. h f is continuous.

Theorem 18 (Intermediate Value Theorem). Let A ⊂ (M, d), and let f : A → R be
continuous. Suppose that K ⊂ A is connected and x, y ∈ K. Then for every real number c ∈ R

such that f (x) < c < f (y), there exists a point z ∈ K such that f (z) = c.

Proof. Suppose no such z exists, then f (A) ⊂ (−∞, c) ∪ (c, ∞). Since y1 < c and y > c,
we know both sets in this union are nonempty. Since f (A) is then clearly covered by two
disjoint nonempty sets, it is disconnected. Since A was taken to be path-connected (and
thus also connected), this is a contradiction, so such a z actually does exist.
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Figure 3.2: The Intermediate Value Theorem.
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3.2 Uniform Continuity

Definition 30. f : M1 → M2 is uniformly continuous if for all ε > 0 and for all
x, y ∈ M1, there exists δ > 0 such that if d1(x, y) < δ, then d2( f (x), f (y)) < ε.

It should be clear how to restrict the uniform continuity of f to certain subsets of M1.
Note that unlike usual continuity, we have to find a δ that works for all x and y, so it

must be independent of the inputs to the function.

Theorem 19. Let f : M1 → M2 be continuous and let K ⊂ M1 be compact, then f is
uniformly continuous on K.
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3.3 Differentiation of Functions of One Variable

Definition 31. The derivative of a function f at point x is defined

f ′(x) .
= lim

h→0

f (x + h)− f (x)
h

.

We can rewrite the definition for differentiability that avoids the issue of division by a
term that approaches 0: for any ε > 0, there is a δ > 0 such that if |∆x| < δ, then

| f (x + ∆x)− f (x)− f ′(x)∆x| ≤ ε|∆x|.

Definition 32. Let φ, g : (0, a)→ R. We say φ is O(g) if∣∣∣∣φ(x)
g(x)

∣∣∣∣
is bounded in some “deleted” neighborhood of 0, i.e. it lies in D(0, r)\ {0} for some
r > 0. Additionally, we say φ is o(g) if

lim
x→0

φ(x)
g(x)

= 0.

Based on these definitions, we can see that f is differentiable at x if there exists some
L ∈ R such that f (y)− f (x)− L(y− x) is o(|y− x|).

Definition 33. A function f : M1 → M2 is Lipschitz if there exists some L ≥ 0 such
that d2( f (x), f (y)) ≤ Ld1(x, y) for all x, y ∈ M1. The function f is locally Lipschitz if
for every compact set K ⊂ M1, f restricted to K is Lipschitz.

Lipschitz functions are also uniformly continuous. If we want d2( f (x), f (y)) be to less
than some ε > 0, then choose x and y such that d1(x, y) < ε/L.

Proposition 30. If f is differentiable at x, then f is continuous at x.

Theorem 20. Suppose that f and g are differentiable at x and that k ∈ R, then k f , f + g, and
f g are differentiable at x and

1. (k f )′(x) = k f ′(x),

2. ( f + g)′(x) = f ′(x) + g′(x), and

3. ( f g)′(x) = f ′(x)g(x) + f (x)g′(x).
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Theorem 21 (Chain Rule). If f is differentiable at x and g is differentiable at f (x), then g ◦ f
is differentiable at x and

(g ◦ f )′(x) = g′( f (x)) f ′(x).

Definition 34. If f (n−1) is differentiable and f (n) continuous, f is Cn. The function f is
C∞ if it is infinitely differentiable.

Definition 35. A function f defined in a neighborhood of x is increasing at x if there
is an interval (a, b) containing x such that

1. If a < y < x, then f (y) ≤ f (x), and

2. If x < y < b, then f (y) ≥ f (x).

The notions of decreasing and strictly increasing/decreasing functions are similar.

Theorem 22. Let f be differentiable at x, then

1. If f is increasing at x, then f ′(x) ≥ 0,

2. If f is decreasing at x, then f ′(x) ≤ 0,

3. If f ′(x) > 0, then f is strictly increasing at x, and

4. If f ′(x) < 0, then f is strictly decreasing at x.

Proposition 31. If f : (a, b)→ R is differentiable at c ∈ (a, b) and if f has a maximum
(or minimum) at c, then f ′(c) = 0.

Proof. If f ′(c) > 0, then f is strictly increasing at c, which is a contradiction. If f ′(c) < 0,
then f is strictly decreasing at c, which is also a contradiction. Thus f ′(c) = 0.

Theorem 23 (Rolle’s). If f : [a, b] → R is continuous, f is differentiable on (a, b), and
f (a) = f (b) = 0, then there is a number c ∈ (a, b) such that f ′(c) = 0.

Theorem 24 (Mean Value Theorem). If f : [a, b]→ R is continuous and differentiable on
(a, b), there is a point c ∈ (a, b) such that f (b)− f (a) = f ′(c)(b− a).



Braden Hoagland Real Analysis | 28

Proof. Let

ϕ(x) = f (x)− f (a)− (x− a)
f (b)− f (a)

b− a
,

then apply Rolle’s Theorem.

Figure 3.3: The Mean Value Theorem.

Corollary 1. If f : [a, b]→ R is continuous and f ′ = 0 on (a, b), then f is constant.

Proof. Applying the mean value theorem to f gives a point c such that f (b) − f (a) =

f ′(c)(b− a) = 0, so f (a) = f (b) for all x ∈ [a, b]. Thus f is constant.

Corollary 2. If f : (a, b) → R is differentiable with | f ′(x)| ≤ M for every x ∈ (a, b),
then f is M-Lipschitz.

Proposition 32. Let f ∈ C([a, b]) be differentiable on (a, b) such that f ′(x) ≥ 0 for
every x ∈ (a, b), then f is increasing on [a, b]. If f ′(x) ≤ 0 for every x ∈ (a, b) instead,
then f is decreasing on [a, b].

Theorem 25 (Inverse Function Theorem). Suppose f : (a, b) → R is strictly monotonic
over (a, b). Then f is a bijection onto its range, f−1 is differentiable on its domain, and
( f−1)′(y) = 1/ f ′(x) where f (x) = y.

Proposition 33. Suppose that f is continuous on [a, b] and twice differentiable on (a, b)
and that x ∈ (a, b), then

1. If f ′(x) = 0 and f ′′(x) > 0, then x is a strict local minimum of f , and
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2. If f ′(x) = 0 and f ′′(x) < 0, then x is a strict local maximum of f .
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3.4 Integration of Functions of One Variable

The integral of a function of one variable is the signed area under the curve. To define these,
we’ll need a notion of partitions and upper and lower sums.

Definition 36. The mesh of a partition P = {x1, x2, . . . , xN} is defined

|P| .
= sup

i
|xi+1 − xi|.

Definition 37. Let P and Q be partitions of [a, b]. We say P is a refinement of Q if
Q ⊂ P. We denote this by Q ≺ P or P � Q.

Consider a bounded function f : A ⊂ R→ R. If A is bounded, then there is some [a, b] ⊃
A. Define f (x) = 0 if x ∈ [a, b]\A. Now partition [a, b] with P = {x0 = a, x1, . . . , xn = b}
such that x0 < x1 < · · · < xn.

Definition 38. Upper/Lower Sums The upper sum of f over P is

U( f , P) =
n−1

∑
i=0

sup
x∈[xi ,xi+1]

f (x)(xi+1 − xi).

Similarly, the lower sum is defined

L( f , P) =
n−1

∑
i=0

inf
x∈[xi ,xi+1]

f (x) · (xi+1 − xi).

Note that the supremum and infimum for each subinterval exist since f is bounded. Let
−M ≤ f ≤ M, then

−M(b− a) ≤ L( f , P) ≤ U( f , P) ≤ M(b− a)

for any partition P of [a, b].

Proposition 34. If P � Q, then L( f , Q) ≤ L( f , P) ≤ U( f , P) ≤ U( f , Q).

Let P and Q be two partitions, then neither is necessarily a subset of the other. To get
around this, we note that for all P and Q, there exists a partition R which refines both, i.e.
R � P and R � Q. The set P ∪Q arranged into an ordered set is one such partition.
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Definition 39. Given a bounded function f : A→ R over a bounded set A, define the
upper integral by ∫

A
f = inf {U( f , P)}P

and the lower integral by ∫
A

f = sup {L( f , P)}P .

Definition 40. A function f is Riemann integrable if
∫

A f =
∫

A f . The common value∫
A f =

∫
A f is denoted by

∫
A f . If A = [a, b], we write

∫
A

f =
∫ b

a
f .

Note that this definition does not involve any notions of smoothness or continuity.

Theorem 26. Any non-increasing or non-decreasing function on [a, b] is Riemann integrable
on [a, b].

Theorem 27. If f : [a, b]→ R is bounded and continuous at all but finitely many points of
[a, b], then it is Riemann integrable on [a, b].

Proposition 35. Let f and g be Riemann integrable on [a, b], then

1. If k ∈ R, then k f is integrable on [a, b] and
∫ b

a k f = k
∫ b

a f ,

2. f + g is integrable on [a, b] and
∫ b

a ( f + g) =
∫ b

a f +
∫ b

a g,

3. If f (x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a f ≤
∫ b

a g, and

4. If f is also integrable on [b, c], then it is integrable on [a, c] and
∫ c

a f =
∫ b

a f +
∫ c

b f .

Corollary 3. The absolute value of a definite integral of f is a lower bound of the
definite integral of the absolute value of f :∣∣∣∣∫ b

a
f (x) dx

∣∣∣∣ ≤ ∫ b

a
| f (x)| dx.
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Proposition 36. The lower definite integral of f is a lower bound of the upper definite
integral, i.e. ∫ b

a
f (x) dx ≤

∫ b

a
f (x) dx.

Definition 41. An antiderivative of f : [a, b]→ R is a continuous function F : [a, b]→
R such that F is differentiable on (a, b) and F′(x) = f (x) for x ∈ (a, b).

Theorem 28 (The Fundamental Theorem of Calculus). Let f : [a, b]→ R be continuous,
then f has an antiderivative F and∫ b

a
f (x) dx = F(b)− F(a).

If G is any other antiderivative of f , then we also have
∫ b

a f = G(b)− G(a).



Chapter 4

Uniform Convergence

4.1 Pointwise and Uniform Convergence

Definition 42. Let X be a set and M be a metric space. A sequence of functions
fk : X → M converges pointwise to f : X → M if for all x ∈ X, fk(x)→ f (x).

Pointwise convergence is straightforward, but it might not preserve the properties of the
fk. As we can see in the next example, continuity of each fk need not translate to continuity
of f if we only have pointwise convergence.

Example 10. Consider the sequence of sigmoid-like functions

fk(x) =
1

1 + e−kx .

As k increases, the “slope” of the curve near 0 gets steeper, getting closer to a vertical
line. Each fk is continuous, but the sequence converges pointwise to

f (x) =


0 x < 0

1/2 x = 0

1 x > 0,

which is clearly not continuous.

Definition 43. Suppose fk : X → M is a sequence of functions such that for all ε > 0,
there is a K such that d( fk(x), f (x)) < ε for all x ∈ X when k > K. Then we say that fk

converges uniformly to f .

With uniform convergence, we have a bound on how slowly each fk(x) converges to its
particular f (x). As you might expect, this results in the preservation of more properties of

33
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the fk. As we’ll see later, if each fk is continuous or differentiable, then f is continuous or
differentiable, respectively.

Note 1. When X is finite, both pointwise and uniform convergence are equivalent. Fix
ε > 0, then each xi, there is a Ki such that | f (xi)− fk(xi)| < ε when k > Ki. Since X is
finite, we can let K = maxi Ki, then we clearly have uniform convergence.

Definition 44. Let gk : X → V be a sequence of functions, where V is a normed vector
space. We say ∑∞

k=1 gk converges pointwise to g : X → V if the sequence sn
.
= ∑n

k=1 gk

converges pointwise to g.
Similarly, we say ∑∞

k=1 gk converges uniformly to g if sk converges uniformly to g.

Note that in the above definition, we needed addition of our space’s elements to make
sense in order to talk about series, thus we used V instead of M.

Proposition 37. Let fk : M1 → M2 be a sequence of continuous functions, and let fk

converge uniformly to f . Then f is continuous on M1.

Corollary 4. Let gk : X → V be continuous for all k. If ∑∞
k=1 gk converges uniformly to

g, then g is continuous.

Proof. This follows from the previous proposition and the fact that the sum of continuous
functions is continuous (so each partial sum is continuous).

Note 2. In other words, we can exchange limits with summations when the conver-
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gence is uniform, i.e.

lim
x→x0

∞

∑
k=1

gk(x) =
∞

∑
k=1

lim
x→x0

gk(x).
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4.2 The Weierstrass-M Test

Theorem 29 (Cauchy Criterion). Let M be a complete metric space, X a set, and fk : X → M
a sequence of functions. Then fk converges uniformly on X if and only if for all ε > 0, there is a
K such that d( fk(x), fl(x)) < ε for all x ∈ X when k, l > K.

The Cauchy criterion can easily be rewritten to apply to series of functions instead: Let
V be a Banach space, then ∑∞

k=1 gk converges uniformly on X if and only if for all ε > 0,
there is a K such that

‖gk(x) + · · ·+ gk+p(x)‖ < ε

for all x ∈ X and for all integers p ≥ 0.

Theorem 30 (Weierstrass-M Test). Let V be a Banach space, and let gk : X → V with
constants Mk such that

‖gk(x)‖ ≤ Mk

for all x ∈ X and such that ∑∞
k=1 Mk converges. Then ∑∞

k=1 gk converges uniformly (and
absolutely).
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4.3 Integration and Differentiation of Series

Theorem 31. Let fk be Riemann integrable on [a, b], and suppose that they converge uniformly
to some function f on [a, b]. Then f is Riemann integrable on [a, b] and

lim
k→∞

∫ b

a
fk(x) dx =

∫ b

a
f (x) dx.

Corollary 5. Let gk : [a, b]→ R be Riemann integrable, and suppose ∑∞
k=1 gk converges

uniformly on [a, b]. Then ∫ b

a

∞

∑
k=1

gk =
∞

∑
k=1

∫ b

a
gk.

Proof. Apply the previous theorem to the sequence of partial sums. We can do this because
the sum of a finite number of Riemann integrable functions is itself Riemann integrable (see
Proposition 35).

Theorem 32. Let fk : (a, b) → R be differentiable on (a, b), and suppose that fk converges
pointwise to f : (a, b)→ R. Also suppose that f ′k is continuous and converges uniformly to
some g. Then f is differentiable and f ′ = g.

Corollary 6. Let gk be differentiable with g′k continuous, and suppose that ∑∞
k=1 gk

converges pointwise and ∑∞
k=1 g′k converges uniformly, then(

∞

∑
k=1

gk

)′
=

∞

∑
k=1

g′k.

Example 11. Consider
1

1− x
=

∞

∑
k=0

xk

for x ∈ (−1, 1). By the Weierstrass-M test, ∑∞
k=0 xk and ∑∞

k=1 kxk−1 converge uniformly
on [−a, a] for any a < 1. Thus by Corollary 6,

d
dx

1
1− x

=
1

(1− x)2 =
∞

∑
k=1

kxk−1.
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4.4 The Space of Continuous Functions

Let M be a metric space and V be a normed vector space, and let F be the set of all functions
from M to V . If we define addition and scalar multiplication in the obvious ways for
functions, then since the zero function is in F , F is a vector space.

Definition 45. We define the space of continuous functions between a metric space
and normed vector space by

C(M,V) = { f ∈ F | f continuous} .

C is also a vector space, since it is closed under addition and scalar multiplication.

Definition 46. We define the space of bounded continuous functions between a metric
space and normed vector space by

Cb(M,V) = { f ∈ C(M,V) | f bounded} .

If M is compact, then by the minimum-maximum theorem, Cb = C (each continuous
function achieves its minimum and maximum, so each is bounded).

When working with Cb, the usual norm is the supremum norm. I won’t use any notation
for this, since it should be obvious when something inside a norm is a function.

Theorem 33. Properties of Cb:

1. Let M1 and M2 be metric spaces, then so is Cb(M1, M2), i.e. the distance function
d( f , g) .

= supx∈M1
d2( f (x), g(x)) satisfies

(a) d( f , g) ≥ 0,

(b) d( f , g) = 0 ⇐⇒ f = g,

(c) d( f , g) = d(g, f ), and

(d) d( f , g) ≤ d( f , h) + d(h, g).

2. If M is a metric space and V is a normed vector space, then Cb(M,V) is a normed vector
space, i.e. the supremum norm satisfies

(a) ‖ f ‖ ≥ 0,

(b) ‖ f ‖ = 0 ⇐⇒ f = 0,

(c) ‖λ f ‖ = |λ|‖ f ‖, and

(d) ‖ f + g‖ ≤ ‖ f ‖+ ‖g‖.
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Theorem 34. If M2 is a complete metric space, then so is Cb(M1, M2). If V is a Banach space,
then so is Cb(M,V).

Note 3. The previous theorem has a clear analogue for C instead of Cb.
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4.5 The Arzela-Ascoli Theorem

Definition 47. Let B ⊂ C(M1, M2). We say that B is equicontinuous if for all ε > 0,
there is a δ > 0 such that d( f (x), f (y)) < ε for all f ∈ B when d(x, y) < δ.

Proposition 38. Let B ⊂ C1(R, R). Suppose there is an M ≥ 0 such that ‖ f ′‖sup ≤ M
for all f ∈ B, then B is equicontinuous.

Proof. By the mean value theorem, f (x)− f (y) = f ′(c)(x − y) ≤ M(x − y) for all f ∈ B.
Set δ = ε/M, then equicontinuity follows.

Definition 48. Precompact A set is precompact if its closure is compact.

Theorem 35. Arzela-Ascoli Let M1 be compact, and let B ⊂ C(M1, M2). Then B is compact
if and only if B is equicontinuous and pointwise precompact.

Corollary 7. Let M be compact, and let B ⊂ C(M, Rn) be equicontinuous and point-
wise bounded. Then every sequence in B has a uniformly convergent subsequence.

Proof. Fix x, then Bx
.
= { f (x) | f ∈ B} is bounded (this is the definition of pointwise

bounded). Then th closure of Bx is closed and bounded in Rn, so it is compact. Thus B is
pointwise precompact.

Since we were already given that B is equicontinuous and M is compact, by Arzela-
Ascoli we know that B is compact. Then every sequence in B has a convergent subsequence.
Convergence here is with respect to the supremum norm, so the convergence is uniform.
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4.6 The Banach Fixed Point Theorem

Theorem 36. Banach Fixed Point Theorem Let M be a complete metric space, and let φ : M→
M be k-Lipschitz with k < 1. Then there is a unique fixed point of φ.

Note 4. The use of k in the Banach fixed point theorem is very important. If

d(φ(x), φ(y)) < d(x, y),

it might be possible to contruct a sequence of x’s and y’s such that

d(φ(x), φ(y))→ d(x, y).

In this case, we won’t necessarily have a fixed point. If we instead have a fixed k such
that

d(φ(x), φ(y)) < kd(x, y),

this aberrant behavior goes away.



Braden Hoagland Real Analysis | 42

4.7 The Stone-Weierstrass Theorem

Definition 49. An algebra is a vector space V equipped with a bilinear function

· : V × V → V .

Suppose B is an algebra. If f , g ∈ B and α is a scalar, then f g, f + g, and α f are all in B.

Definition 50. A set of functions B separates points if, for x 6= y, there is some function
f ∈ B such that f (x) 6= f (y).

Theorem 37 (Stone-Weierstrass). Let M be a compact metric space, and let B ⊂ C(M, R)

such that

1. B is an algebra,

2. x 7→ 1M ∈ B, and

3. B separates points.

Then B is dense in C(M, R).
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4.8 Power Series

Definition 51. A power series centered at x0 ∈ R is a series of the form

p(x) =
∞

∑
k=0

ak(x− x0)
k,

where ak ∈ R or C.

Definition 52. Let ρ be defined by

lim sup
k→∞
|ak|1/k =

1
ρ

,

then ρ is the radius of convergence for the power series.

Theorem 38. The power series

p(x) =
∞

∑
k=0

ak(x− x0)
k

converges absolutely for |x − x0| < ρ and converges uniformly for |x − x0| < R < ρ. It
diverges for |x− x0| > ρ.

Corollary 8. In (x0 − ρ, x0 + ρ), we have

d
dx

p(x) =
∞

∑
k=1

kak(x− x0)
k−1.

Corollary 9. A power series p(x) is C∞, and each of its derivatives has the same radius
of convergence.

Theorem 39. If we have a power series ∑∞
k=0 ak(x− x0)

k, then its radius of convergence is

ρ = lim
k→∞

∣∣∣∣ ak
ak+1

∣∣∣∣
if this limit exists.
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Proposition 39. Every power series is equal to its Taylor series.

Proof. Given p(x) = ∑∞
k=0 ak(x − x0)

k, we have p(x0) = a0. Then p′(x) = ∑∞
k=1 kak(x −

x0)
k−1, so p′(x0) = a1. Continuing inductively, we have

p(k)(x0) = k! ak.

The Taylor expansion of p(x) is then

∞

∑
k=0

p(k)(x0)

k!
(x− x0)

k =
∞

∑
k=0

ak(x− x0)
k = p(x).

Note 5. In general, a function might not equal to its Taylor series. If a function’s Taylor
series converges to the value of the function in a neighborhood of some point x0, then
that function is real analytic at x0.



Chapter 5

The Derivative

5.1 Generalized Derivatives

In one variable, f : (a, b)→ R is differentiable at x0 ∈ (a, b) if

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h

exists, but we can rewrite this as

lim
x→x0

| f (x)− f (x0)− f ′(x0)(x− x0)|
|x− x0|

= 0.

Thus differentiabilty of f at x0 is equivalent to the existence of some number m such that

lim
x→x0

| f (x)− f (x0)−m(x− x0)|
|x− x0|

= 0.

Note that the function T(x) : mx is linear. We can now generalize this to arbitrary maps
between normed vector spaces.

Definition 53. Let V andW be normed vector spaces, and let L : V → W be linear. We
say L is bounded if there is an M ≤ 0 such that ‖Lv‖W ≤ M‖v‖V for all v ∈ V .

Proposition 40. If V is finite-dimensional, then any linear function L : V → W is
bounded.

Proposition 41. Let V andW be normed vector spaces, and let L : V → W be linear,
then L is continuous if and only if L is bounded.

45
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Definition 54. Let f : V → W , where V andW are normed vector spaces. We say f is
differentiable at x0 if there is a bounded linear function D fx0 : V → W such that

lim
x→x0

‖ f (x)− f (x0)−D fx0(x− x0)‖
‖x− x0‖

= 0.

We call D fx0 the derivative of f at x0.

Equivalently, a function f is differentiable at x0 if for all ε > 0, there is a δ > 0 such that

‖ f (x)− f (x0)−D fx0(x− x0)‖ ≤ ε‖x− x0‖

when ‖x− x0‖ < δ.

Note 6. The map x 7→ f (x0) + D fx0(x− x0) is the best affine approximation to f near
x0.

Theorem 40. Let U be open in V , and let f : V → W be differentiable at x0, then D fx0 is
uniquely determined by f .

Example 12 (Derivatives of Linear Functions). Let L : V → W be linear, then its
derivative is just itself. By the linearity of L, we have

‖L(x)− L(x0)− L(x− x0)‖
‖x− x0‖

=
‖L(x)− L(x0)− L(x) + L(x0)‖

‖x− x0‖
= 0,

so L is its own derivative.

Example 13 (Derivatives of Constant Functions). Let C : V → W be constant, then its
derivative is 0. We have

‖C(x)− C(x0)‖
‖x− x0‖

= 0

since C(x) = C(x0), so the derivative is 0.

Let L(Rn, Rm) be the set of all bounded linear functions from Rn to Rm (of course, since
Rn is finite-dimensional, all linear maps are bounded). If f : Rn → Rm is differentiable on
some open set U, then for all x ∈ U,

D fx ∈ L(Rn, Rm).

Then x 7→ D fx defines a function from U ⊂ Rn to L(Rn, Rm). The derivative of this new
map, which we denote D2 fx, belongs to the complicated space

L(Rn, L(Rn, Rm)).

We can similarly define Dk fx for all k ∈N. Now we have a notion of higher-order deriva-
tives.
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Proposition 42. If f is differentiable, then f is continuous.

Proof. Let f be differentiable at x0, then for all ε > 0, there is a δ > 0 such that

‖ f (x)− f (x0)−D fx0(x− x0)‖ < ε‖x− x0‖

when ‖x− x0‖ < δ. Choose ε = 1, then there is a δ such that

‖ f (x)− f (x0)‖ < ‖D fx0(x− x0)‖+ ‖x− x0‖

when ‖x− x0‖ < δ. Now the derivative of f is a bounded linear function, so this becomes

‖ f (x)− f (x0)‖ < M‖x− x0‖+ ‖x− x0‖
= (M + 1)‖x− x0‖.

Thus f is Lipschitz, so it is continuous.
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5.2 Matrix Representation of the Derivative

Definition 55. The partial derivative of a function f : Rn → Rm is defined

∂ f j

∂xi
(x0) = lim

h→0

f j(x0 + hei)− f j(x0)

h
,

where {e1, . . . , en} is a basis for Rn.

Note that each partial derivative of f : Rn → Rm is also a function from Rn to Rm.
The partial derivatives of a function have a close connection with the whole derivative.

Consider a function f : Rn → R. If f is differentiable at x0, then

f (x0 + hej)− f (x0)−D fx0(hej)

h
→ 0

as h→ 0, so

lim
h→0

f (x0 + hej)− f (x0)

h
=

D fx0(hej)

h
= D fx0(ej),

where the last equality follows from the linearity of D fx0 . Thus if f is differentiable at x0,
then

∂ f
∂xj

(x0) = D fx0(ej).

Since D fx0 is uniquely determined by where it sends the basis elements ej, we can write it as

D fx0 =

(
∂ f
∂x1

(x0), · · · ,
∂ f
∂xn

(x0)

)
.

This is easily extended to the case when f : Rn → Rm, but it should be clear how having
f = ( f1, · · · , fn) would make the D f notation messier...

Note 7. Because it’s important, I’m gonna write it again here:

D fx0(ej) =
∂ f
∂xj

(x0)

and

D fx0 =

(
∂ f
∂x1

(x0), · · · ,
∂ f
∂xn

(x0)

)
.
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Example 14. Let f : R2 → R2, with

f (x) =

(
f1(x)
f2(x)

)
,

then

D fx =

(
∂ f1
∂x1

∂ f1
∂x2

∂ f2
∂x1

∂ f2
∂x2

)
,

where each partial derivative is evaluated at x.

Definition 56. Suppose f : Rn → Rm has well-defined partial derivatives, then its
Jacobian matrix is defined 

∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 .

Theorem 41. Let U be open in Rn, and let f : U → Rm be differentiable on U. Then all
partial derivatives of f exist and the matrix of D fx with respect to the standard bases in Rn

and Rm is the Jacobian of f , where every partial derivative is evaluated at x.

Note 8. The Jacobian matrix changes when basis is changed, whereas the linear map
D fx that it represents is the same for any basis.

Theorem 42. Let U be open in Rn, and let f : U → Rm. Suppose ∂ f /∂xj exist and are
continuous for all i and j, then f is differentiable in all of U.

Theorem 43 (Chain Rule). Let A be open in Rn and B be open in Rm, and let f : A → B
and g : B→ Rk be differentiable. Then g ◦ f : A→ Rk is differentiable and

D(g ◦ f )x = Dg f (x) ◦D fx.
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5.3 Taylor’s Theorem

Definition 57. A function

φ : Rn × · · · ×Rn︸ ︷︷ ︸
k times

→ Rm

is k-multilinear if φ is linear in each of its k arguments.

If k = 2, we say “bilinear” instead of 2-multilinear.

Definition 58. A k-multilinear map φ is symmetric if

φ(vσ(1), · · · , vσ(k)) = φ(v1, · · · , vk)

for all σ in the symmetric group of {1, . . . , k}. It is skew/alternating if

φ(vσ(1), · · · , vσ(k)) = sign(σ) · φ(v1, · · · , vk).

Theorem 44. Let U be open in Rn, and let f : U → Rm be C2, then D2 fx is symmetric, i.e.
the partial derivatives of f commute.

Theorem 45 (Taylor’s Theorem). Let U be open in Rn, and let f : U → Rm be Ck. Let
x, y ∈ U such that the segment joining them lies in U. Then there is a c on that segment such
that

f (x) = f (y) +
k−1

∑
j=1

1
j!

Dj f j (x− y, · · · , x− y)︸ ︷︷ ︸
j times

+
1
k!

Dk fc (x− y, · · · , x− y)︸ ︷︷ ︸
k times

.

Definition 59. The sum
k−1

∑
j=1

1
j!

Dj f j (x− y, · · · , x− y)︸ ︷︷ ︸
j times

is called the Taylor polynomial of degree k− 1 for a function f .
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5.4 Extrema

Proposition 43. Let U be open in Rn, and let f : U → Rm be differentiable. If f attains
a local max/min at x0 ∈ U, then D fx0 = 0.

Proof. Let v be a unit vector, then consider the function cv : (−a, a)→ U given by

cv(t) = x0 + tv.

(I don’t know what a is, but it’s obvious that one exists. It doesn’t matter what it is for the
sake of this proof, so I don’t bother finding it).

The composition f ◦ cv : (−a, a) → Rm has a local min/max at t = 0, so by the one-
variable version of this proposition, we know

0 =
d
dt
( f ◦ cv)

∣∣∣
t=0

= D fcv(0)(c
′
v(0))

= D fx0(v).

Thus D fx0 evalutes to 0 at any unit vector v. Of course, we care about elements of U, not
arbitrary unit vectors. But for any ṽ ∈ U, since ṽ/‖ṽ‖ is a unit vector and since D fx0 is
linear, we have

D fx0(ṽ) = ‖ṽ‖D fx0

(
ṽ
‖ṽ‖

)
= ‖ṽ‖ · 0 = 0.

Thus D fx0 = 0.

Theorem 46. Let U be open in Rn, and let f : U → R be C2. Suppose that x0 ∈ U is a
critical point of f . If D2 fx0 is negative definite, then x0 is a local max. If D2 fx0 is positive
definite, then x0 is a local min.
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