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1 T H E B A S I C S

1.1 C AT E G O R I E S

Definition 1. A category C is a collection of

• objects ob(C); and

• morphismsmor(C).

Let Hom(A,B) denote the morphsisms from objectA to objectB. There are several requirements:

1. Morphisms must compose: (f, g) 7→ gf.

2. Morphism composition is associative.

3. IfA 6= C orB 6= D, then Hom(A,B) and Hom(C,D) are disjoint.

4. Each object has an identity morphism, which is a two-sided identity.

A category is concrete if, informally, its objects are underlying sets and its morphisms are functions
between them, e.g. Set,Top,Grp. By contrast, abstract categories don’t have this structure, e.g. BG for
a groupG.

A category is discrete if all its morphisms are identities, i.e. all its objects are isolated.
Because of set-theoretical issues, it’s useful to denote when a category is “small enough”. We say a

category is small if it has only a set’s worth of morphisms. Since

identity morphisms↔ objects,

small categories also have a set’s worth of objects. We can loosen this somewhat: if Hom(X,Y ) is always
a set, the category is locally small.

Proposition 1. Identity morphisms and morphism inverses are unique.
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Definition 2. An isomorphism is an invertible morphism.

X Y

f

f−1

Isomorphisms (isos) generalize bijective functions, which are both injective and surjective. Injective func-
tions generalize to monomorphisms (monos), and surjective functions to epimorphisms (epis).

Include split monos/epis.

Definition 3. A morphism f is a monomorphism if for all parallel (between same objects) mor-
phisms g, hwith the proper domains,

fg = fh =⇒ g = h.

Similarly, f is an epimorphism if

gf = hf =⇒ g = h.

There’s some fun vocab and symbols to go alongwith these. Monos aremonic and denoted by↣, and epis
are epic and denoted by↠. An isomorphism is necessarily both monic and epic, although the converse
doesn’t hold in general.

Special types of morphisms get their own special names sometimes too. An endomorphism is a mor-
phismX → X . An isomorphic endomorphism is called an automorphism.

Definition 4. A category S is a subcategory of C if

1. ob(S) is a subcollection of ob(C); and

2. for allA,B ∈ ob(S), HomS(A,B) is a subcollection of HomC(A,B)with identity.

A full subcategory doesn’t remove any morphisms between the remaining objects, i.e.

HomS(A,B) = HomC(A,B).

Definition 5. A groupoid is a category whose morphisms are all isomorphisms.

Every category contains a subcategory called themaximal groupoid, which is all of the objects along with
only the morphisms that are isomorphisms.

Example 1. We can define a group as a groupoid that has only one object. The group elements are
the morphisms. The properties of a group follow from the properties of categories and the fact that
our morphisms are all isomorphisms. Given a groupG, its representation as a single-object category
is denotedBG.



1.2 D U A L I T Y

Definition 6. Given a category C, its opposite or dual category Cop is the category gotten by “re-
versing” the morphisms of C. This means

ob(Cop) = ob(C),

HomCop(A,B) = HomC(B,A).

My biggest misconception of this at first was that we were actually reversing each morphism, but this is
clearly impossible. For example, if we’re working in Set, we physically can’t reverse all the morphisms
since not all functions are invertible.

Note 1. We aren’t actually changing any of the morphisms. The “reversal” of a morphism is a com-
pletely formal process. In fact, we can’t even compare f and f op since they live in different categories!
At the end of the day, a category’s dual has the same information, but the notation is just all reversed.

Note that the identities in a category and its dual are the same. Compositions, on the other hand, are
necessarily reversed:

f opgop
.
= (gf)op.

• • • •

• •

f

gf
g

f ′

f ′g′ g′

Duals are important because theymake universal quantifications twice as valuable: if a theorem applies
“for all categories”, then it certainly applies to the opposites of all categories. We can then reinterpret the
theorem in the opposite case to get a dual theorem, and to prove it we just reverse all the morphisms in our
original proof.



1.3 F U N C T O R S

Functors are the morphisms associated with categories: they map categories to categories in ways that re-
spect categorical structure.

Definition 7. A (covariant) functorF : C → D satisfies:

• IfA ∈ C, thenFA ∈ D.

• If f : A → B, thenFf : FA → FB.

These are subject to the functoriality axioms:

• F(fg) = Ff · Fg for all f, g.

• F1A = 1FA for allA.

B FB

A FA

C FC

g Fg

f Ff

h Fh

A contravariant functor is the same but with the morphisms Ff reversed. This is just a covariant
functor in disguise, though: we can represent it by a covariant functor with domain Cop.

F : Cop → D.

B FB

A FA

C FC

g

Fff

Fhh

Fg

Example 2. Some fun functors :)

1. Forgetful functors.

2. Top → Htpy is the identity onobjects (topological spaces) and sendsmorphisms (continuous
functions) to their homotopy class.

3. π1 is a functor Top∗ → Grp.

Proposition 2. Functors preserve isos and split monos/epis.



Definition 8. A functorF : C → D is faithful if for all objectsA,B of C, the map

Hom(A,B) → Hom(FA,FB)

f 7→ Ff

is one-to-one. F is full if this map is onto.

Note that the fixed A andB above are important. The injective/surjective conditions don’t apply to
arbitrary morphisms in C since they might connect different objects.

Figure 1.1: For all A,B, and g, a faithful functor sends atmost one solid arrow in C to g. A full functor
sends at least one solid arrow in C to g.

Example 3. The inclusion functor fromS toC is always faithful, and it’s full if and only ifS is a full
subcategory.



1.4 N AT U R A L T R A N S F O R M AT I O N S

Natural transformations change one functor into another in a way that respects the underlying structure
of the categories involved. It’s kinda like a homotopy betweenF and G in the sense that for allC ∈ C, it
gives a morphism fromFC to GC .

Definition 9. SupposeF ,G : C → D are functors. Then a natural transformation α : F ⇒ G
is a family of components

{ηX : FX → GX}X
such that the following diagram commutes for any f : X → Y in C.

FX GX

FY GY

ηX

Ff Gf
ηY

If every ηX is an isomorphism, then η is a natural isomorphism and we write η : F ∼= G.



2 U N I V E R S A L P R O P E RT I E S

2.1 C O MM O N E X A M P L E S

Definition 10. (X, {πα}α) is a product of {Xα}α if for all Y and morphisms fα : Y → Xα,
there is a unique morphism f : Y → X lifting each fα.

X

Y Xα

πα
∃! f

fα

Definition 11. (X, {πα}α) is a coproduct of {Xα}α if for all Y and morphisms fα : Xα → Y ,
there is a unique morphism f : X → Y extending each fα.

X

Y Xα

∃! f

fα

iα

Proposition 3. If (X, {πα}) is a product, then each πα is epic. If (X, {iα}) is a coproduct, then
each iα is monic.

Definition 12. (F, i) is free on the setB if for all objectsX andmaps f : B → X , there is a unique
morphism F → X extending f .

F

B X

∃!
i

f

8


	The Basics
	Categories
	Duality
	Functors
	Natural Transformations

	Universal Properties
	Common Examples


