C O N T E N T S

1	The Basics		
	1.1	Categories	2
	1.2	Duality	4
	1.3	Functors	5
	1.4	Natural Transformations	7
2	Univ 2.1	v ersal Properties Common Examples	8 8

1 THE BASICS

1.1 CATEGORIES

Definition 1. A category C is a collection of

- objects ob(C); and
- morphisms mor(C).

Let Hom(A, B) denote the morphisms from object A to object B. There are several requirements:

- 1. Morphisms must compose: $(f, g) \mapsto gf$.
- 2. Morphism composition is associative.
- 3. If $A \neq C$ or $B \neq D$, then Hom(A, B) and Hom(C, D) are disjoint.
- 4. Each object has an identity morphism, which is a two-sided identity.

A category is **concrete** if, informally, its objects are underlying sets and its morphisms are functions between them, e.g. **Set**, **Top**, **Grp**. By contrast, **abstract** categories don't have this structure, e.g. BG for a group G.

A category is **discrete** if all its morphisms are identities, i.e. all its objects are isolated.

Because of set-theoretical issues, it's useful to denote when a category is "small enough". We say a category is **small** if it has only a set's worth of morphisms. Since

identity morphisms \leftrightarrow objects,

small categories also have a set's worth of objects. We can loosen this somewhat: if Hom(X, Y) is always a set, the category is **locally small**.

Proposition 1. Identity morphisms and morphism inverses are unique.

Definition 2. An isomorphism is an invertible morphism.

$$X \underbrace{f}_{f^{-1}} Y$$

Isomorphisms (isos) generalize bijective functions, which are both injective and surjective. Injective functions generalize to monomorphisms (monos), and surjective functions to epimorphisms (epis). Include split monos/epis.

Definition 3. A morphism f is a **monomorphism** if for all parallel (between same objects) morphisms g, h with the proper domains,

$$fg = fh \implies g = h.$$

Similarly, f is an **epimorphism** if

 $gf = hf \implies g = h.$

There's some fun vocab and symbols to go along with these. Monos are monic and denoted by \rightarrow , and epis are epic and denoted by \rightarrow . An isomorphism is necessarily both monic and epic, although the converse doesn't hold in general.

Special types of morphisms get their own special names sometimes too. An **endomorphism** is a morphism $X \rightarrow X$. An isomorphic endomorphism is called an **automorphism**.

Definition 4. A category S is a subcategory of C if

- 1. $ob(\mathbf{S})$ is a subcollection of $ob(\mathbf{C})$; and
- 2. for all $A, B \in ob(\mathbf{S})$, $Hom_{\mathbf{S}}(A, B)$ is a subcollection of $Hom_{\mathbf{C}}(A, B)$ with identity.

A full subcategory doesn't remove any morphisms between the remaining objects, i.e.

$$\operatorname{Hom}_{\mathbf{S}}(A, B) = \operatorname{Hom}_{\mathbf{C}}(A, B).$$

Definition 5. A groupoid is a category whose morphisms are all isomorphisms.

Every category contains a subcategory called the **maximal groupoid**, which is all of the objects along with only the morphisms that are isomorphisms.

Example 1. We can define a **group** as a groupoid that has only one object. The group elements are the morphisms. The properties of a group follow from the properties of categories and the fact that our morphisms are all isomorphisms. Given a group G, its representation as a single-object category is denoted BG.

1.2 DUALITY

Definition 6. Given a category **C**, its **opposite** or **dual** category **C**^{op} is the category gotten by "reversing" the morphisms of **C**. This means

$$ob(\mathbf{C}^{op}) = ob(\mathbf{C}),$$

Hom_{**C**^{op}}(A, B) = Hom_{**C**}(B, A).

My biggest misconception of this at first was that we were actually reversing each morphism, but this is clearly impossible. For example, if we're working in **Set**, we physically can't reverse all the morphisms since not all functions are invertible.

Note 1. We aren't actually changing any of the morphisms. The "reversal" of a morphism is a completely formal process. In fact, we can't even compare f and f^{op} since they live in different categories! At the end of the day, a category's dual has the same information, but the notation is just all reversed.

Note that the identities in a category and its dual are the same. Compositions, on the other hand, are necessarily reversed:

Duals are important because they make universal quantifications twice as valuable: if a theorem applies "for all categories", then it certainly applies to the opposites of all categories. We can then reinterpret the theorem in the opposite case to get a dual theorem, and to prove it we just reverse all the morphisms in our original proof.

1.3 FUNCTORS

Functors are the morphisms associated with categories: they map categories to categories in ways that respect categorical structure.

Definition 7. A (covariant) functor $\mathcal{F} : \mathbf{C} \to \mathbf{D}$ satisfies:

- If $A \in \mathbf{C}$, then $\mathcal{F}A \in \mathbf{D}$.
- If $f : A \to B$, then $\mathcal{F}f : \mathcal{F}A \to \mathcal{F}B$.

These are subject to the functoriality axioms:

- $\mathcal{F}(fg) = \mathcal{F}f \cdot \mathcal{F}g$ for all f, g. $\mathcal{F}1_A = 1_{\mathcal{F}A}$ for all A.

A contravariant functor is the same but with the morphisms $\mathcal{F}f$ reversed. This is just a covariant functor in disguise, though: we can represent it by a covariant functor with domain \mathbf{C}^{op} .

Example 2. Some fun functors :)

- 1. Forgetful functors.
- 2. **Top** \rightarrow **Htpy** is the identity on objects (topological spaces) and sends morphisms (continuous functions) to their homotopy class.
- 3. π_1 is a functor **Top**_{*} \rightarrow **Grp**.

Proposition 2. Functors preserve isos and split monos/epis.

Definition 8. A functor $\mathcal{F} : \mathbf{C} \to \mathbf{D}$ is **faithful** if for all objects A, B of \mathbf{C} , the map

$$\operatorname{Hom}(A,B) \to \operatorname{Hom}(\mathcal{F}A,\mathcal{F}B)$$
$$f \mapsto \mathcal{F}f$$

is one-to-one. ${\mathcal F}$ is ${\boldsymbol{full}}$ if this map is onto.

Note that the fixed A and B above are important. The injective/surjective conditions don't apply to arbitrary morphisms in **C** since they might connect different objects.

Figure 1.1: For all A, B, and g, a faithful functor sends at *most* one solid arrow in **C** to g. A full functor sends at *least* one solid arrow in **C** to g.

Example 3. The inclusion functor from **S** to **C** is always faithful, and it's full if and only if **S** is a full subcategory.

1.4 NATURAL TRANSFORMATIONS

Natural transformations change one functor into another in a way that respects the underlying structure of the categories involved. It's kinda like a homotopy between \mathcal{F} and \mathcal{G} in the sense that for all $C \in \mathbf{C}$, it gives a morphism from $\mathcal{F}C$ to $\mathcal{G}C$.

Definition 9. Suppose $\mathcal{F}, \mathcal{G} : \mathbf{C} \to \mathbf{D}$ are functors. Then a **natural transformation** $\alpha : \mathcal{F} \Rightarrow \mathcal{G}$ is a family of **components**

$$\{\eta_X: \mathcal{F}X \to \mathcal{G}X\}_X$$

such that the following diagram commutes for any $f: X \to Y$ in \mathbf{C} .

$$\begin{array}{c} \mathcal{F}X \xrightarrow{\eta_X} \mathcal{G}X \\ \mathcal{F}f \downarrow \qquad \qquad \qquad \downarrow \mathcal{G}f \\ \mathcal{F}Y \xrightarrow{\eta_Y} \mathcal{G}Y \end{array}$$

If every η_X is an isomorphism, then η is a **natural isomorphism** and we write $\eta : \mathcal{F} \cong \mathcal{G}$.

2 UNIVERSAL PROPERTIES

2.1 COMMON EXAMPLES

Definition 10. $(X, \{\pi_{\alpha}\}_{\alpha})$ is a **product** of $\{X_{\alpha}\}_{\alpha}$ if for all Y and morphisms $f_{\alpha} : Y \to X_{\alpha}$, there is a unique morphism $f : Y \to X$ lifting each f_{α} .

Definition 11. $(X, \{\pi_{\alpha}\}_{\alpha})$ is a **coproduct** of $\{X_{\alpha}\}_{\alpha}$ if for all Y and morphisms $f_{\alpha} : X_{\alpha} \to Y$, there is a unique morphism $f : X \to Y$ extending each f_{α} .

Proposition 3. If $(X, \{\pi_{\alpha}\})$ is a product, then each π_{α} is epic. If $(X, \{i_{\alpha}\})$ is a coproduct, then each i_{α} is monic.

Definition 12. (F, i) is free on the set B if for all objects X and maps $f : B \to X$, there is a unique morphism $F \to X$ extending f.

