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1 C H A I N C O M P L E X E S

1.1 C H A I N C O M P L E X E S

Want a more intuitive view of left/right exact functors, maybe in terms of lifts/ extensions.

Definition 1. A chain complex C is a sequence ofR-morphisms

· · · Ci+1 Ci Ci−1 · · ·di+2 di+1 di di−1

such that d2 = 0 for all i. Cochain complexes are the same, except the boundary maps take you up
a level instead of down.

· · · Ci−1 Ci Ci+1 · · ·di−1 di di+1 di+2

Themap di is the boundary operator, as it is a generalization of the geometric concept of a boundary
(note d2 = 0). Thus an element of Im d is a boundary. Since usual geometric cycles have no boundary,
we call the elements of Ker d cycles.

Example 1. Chain complexes generalize the concept of boundaries to objects that don’t necessar-
ily have clear cyclic geometric properties. Let Ωn(M) denote the space of differential n-forms on a
manifoldM , then we have a cochain complex

Ω0(M) Ω1(M) Ω2(M) · · ·d d d

where d is the exterior derivative. From this we see that the cycles of Ω0(M) (the space of differen-
tiable functions onM ) are the constant functions.

Amorphism of complexes/chain morphism f : C → D is a sequence of morphisms fi : Ci → Di

respecting the boundary map, i.e. making the following diagram commute.

Ci Ci−1

Di Di−1

fi

dC

fi−1

dD
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1.2 C H A I N H O M O T O P I E S

Definition 2. Given two chain complexesA,B, two chain morphisms f, g : A → B are (chain)
homotopic, written f ' g, if there are morphisms si : Ai → Bi−1 such that

d′s+ sd = f − g.

IfA,B are cochain complexes instead, then si : Ai → Bi+1.

Ai−1 Ai Ai+1

Bi−1 Bi Bi+1

d d

fi gi
si

si+1

d′ d′

Motivation for this?

Definition 3. A chain morphism f : A → B is a homotopy equivalence if there’s another chain
morphism g : B → A such that fg ' 1B and gf ' 1A.

A B
f

g

Proposition 1. Additive functors preserve homotopy equivalence.

Proof. Letf ' g. IfF is additive and covariant, thend′s+sd = f−g =⇒ F(d′)F(s)+F(s)F(d) =
Ff−Fg. ThusFf ' Fg. IfG is additive and contravariant, thenG(d)G(s) = G(s)G(d′) = Gf−Gg.
Since all the arrows are reversed, the LHS is the right form, so Gf ' Gg.



1.3 H O M O L O G Y

Note 1. Big idea: given some module, we always have a way of getting a chain complex (take a reso-
lution). Chain complexes by themselves aren’t nice, though: they might be unwieldy or unnatural,
similar objects might have dissimilar complexes, etc. Passing to homology makes these problems go
away, though, giving us access to nice algebraic invariants.

Definition 4. The n-th homology group Hn(C) of a chain complex C is the kernel of the map
going out of Cn quotiented by the image of the map coming into Cn. Cochain complexes have
cohomology groupsHn(C) instead.

Proposition 2. A chain/cochain complex is exact ⇐⇒ all its homology/cohomology groups are
trivial.

Thus the (co)homology groups of a (co)chain complex measure howmuch it fails to be exact.

Proposition 3. A morphism of complexes f : A → B induces group morphisms between the
complexes’ homology/cohomology groups given by [a] 7→ [fn(a)].

An−1 An An+1

Bn−1 Bn Bn+1

⇝
Hn(A)

Hn(B)

Proof. This follows from themorphism of complexes respecting the boundarymap and thusmapping the
kernels and images of the first complex to the kernels and images of the second.

Proposition 4. If f∗ is the induced (co)homology map of f , then (gf)∗ = g∗f∗.

Definition 5. 0 → A → B → C → 0 is a short exact sequence of complexes if each 0 → An →
Bn → Cn → 0 is short exact.



Lemma 1 (Snake Lemma). If the following diagram has exact rows,

A B C 0

0 A′ B′ C ′

α β γ

then there is an induced exact sequence

Kerα → Kerβ → Ker γ → Cokerα → Cokerβ → Coker γ.

Theorem 1 (Long Exact Sequence in Cohomology). If 0 → A → B → C → 0 is a short exact
sequence of complexes, then there is a long exact sequence of cohomologies

0 → H0(A) → H0(B) → H0(C)
→ H1(A) → H1(B) → H1(C)
→ H2(A) → · · ·

where the morphismsHn(C) → Hn+1(A) are the connecting morphisms.

Proof. Intuition? Use snake lemma (have proof of this in spectral sequences paper).

Corollary 1. If 0 → A → B → C → 0 is exact and any 2 of the complexes are exact themselves,
then so is the third.

Proof. The LES of cohomologies becomes all 0, except for eachHn(X ), where X is the third complex.
Now 0 → Hn(X ) → 0 exact =⇒ Hn(X ) ∼= 0, soX is exact.

Definition 6. Amorphism of complexes is a quasi-isomorphism if the (co)homology maps it in-
duces are all iso.

Lemma 2. If f ' g, then they induce the same (co)homology maps, i.e. f∗ = g∗.

Proof. Suppressing subscripts, suppose f = d′s+ sd, then the induced map is

[a] 7→ [f(a)] = [(d′s)(a) + (sd)(a)] = [d′(s(a)) + s(0)] = [0].

Then if f ' g, we have [f(a)] = [(g + d′s+ sd)(a)] = [g(a)].

Proposition 5. A homotopy equivalence is a quasi-iso.

Proof. Suppose f and g are inverse chain homotopies, then by the lemma, f∗g∗ = (fg)∗ = (1B)∗ =
1H(B) and, similarly, g∗f∗ = 1H(A). ThusHn(A) ∼= Hn(B) for all n.



2 D E R I V E D F U N C T O R S

2.1 R E S O L U T I O N S

Definition 7. SupposeA is anR-module, then a projective resolution overA is an exact sequence
of projectiveR-modules

· · · Pn Pn−1 · · · P0 A 0
dn dn−1 d1 ε

and a injective resolution overA is an exact sequence of injectiveR-modules

0 A I0 · · · In−1 In · · · .ε d1 dn−1 dn

Theorem 2 (Existence). EveryR-module has a projective and injective resolution.

Proof. LetA be anR-module, and let P0 be free onA. Then there’s a uniqueR-morphism ε : P0 → A

extending 1A. It’s clearly epic, so P0
ε→ A → 0 is exact. Now let P1 be free on Ker ε, then there’s a

uniqueR-morphism d1 : P1 ↠ Ker ε, soP1
d1→ P0

ε→ A is exact. Continue inductively, withPn+1 free
on Ker dn. Since each Pi is free, each is projective.

Proposition 6. R-morphisms lift to morphisms of projective/injective resolutions that are unique
up to chain homotopy.

· · · P1 P0 A 0

· · · P ′
1 P ′

0 A′ 0

f1 f0 f

0 A I0 I1 · · ·

0 A′ I ′0 I ′1 · · ·

g g0 g1

Proof. Inductively use the fact that all the Pi, P
′
i are projective and Ii, I ′i are injective to get each fn and

gn. Chain homotopy bit.
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Corollary 2. Any twoprojective/injective resolutions of the samemodule are homotopy equivalent.

Proof. Consider the following lifts to projective resolutions (the case of injective resolutions is similar).

P A 0

P ′ A 0

P A 0

f• 1A

g• 1A

The identity map is a valid candidate for each gnfn, so gnfn ' 1. Now flip the diagram upside down and
use the same fn and gn maps, yielding fngn ' 1.

Corollary 3. Any two projective/injective resolutions have isomorphic (co)homology groups.

Proof. They’re homotopy equivalent, so they’re quasi-isomorphic by Proposition 5.

Maybe start this section more generally, with left and right resolutions...



2.2 D E R I V E D F U N C T O R S

Note 2. Big idea: a left exact covariant functorF can turn a SES into a short left exact sequence, but
there is only one canonical way to extend this to a LES, and that’s with right derived functors. Left
derived functors do the same for right exact functors.

Suppose we apply an additive functor F to some projective/injective resolution of a module A. The
(co)homology groups of the resulting complex are unique up to isomorphism:

• LetX ,Y be projective/injective resolutions ofA, then they’re homotopy equivalent byCorollary 2.

• By Proposition 1, additive functors preserve homotopy equivalence, soFX andFY are also homo-
topy equivalent.

• By Proposition 5, homotopy equivalent complexes have isomorphic (co)homology groups.

Thus we can define the (co)homology groups of the sequence gotten by applying an additive functor
F to a projective/injective resolution ofA using any resolution.

Definition 8. Let F be an additive(????) functor and A an R-module, then choose a resolution
ofA from the following chart based onF .

Left exact, covariant injective
Left exact, contravariant projective
Right exact, covariant projective

Right exact, contravariant injective

ApplyF to the resolution, remove theFA term from it, then take (co)homologies. IfF is left exact,
the cohomologiesRiF are the right derived functors ofF . IfF is right exact, the homologiesLiF
are the left derived functors ofF .

I don’t think the derived functors depend on A at all, they can just be applied to A, etc. to
get new objects...

With left exact functors, we end up with induced sequences of the form

0 → FX0 → FX1 → FX2 → · · · ,

thus why the derived functors are “right”. Similarly, for right exact functors, we end up with induced
sequences of the form

FX2 → FX1 → FX0 → 0,

thus why the derived functors are “left”. As examples, see the next two propositions.
Can you get both sets of sequences at once if F is exact?
They’re actually functors.... b/c (co)homology is a functor.
More detail about why we choose inj or proj resolution.

Proposition 7. IfF is left exact, thenR0F = F .

Proof. Covariant: If 0 → A
f
↣ I0

g→ I1 is exact, then so is 0 → FA
Ff
↣ FI0

Fg→ FI1. Then
R0F(A) = Ker(Fg) = Im(Ff) ∼= F(A) (by the 1st iso theorem sinceFf monic).

Contravariant: Use a projective resolution instead. The process is the same.



Proposition 8. IfF is right exact, thenL0F = F .

Proof. Covariant: If P1
f→ P0

g
↠ A → 0 is exact, then so is FP1

Ff→ FP0

Fg
↠ FA → 0. Then

L0F(A) = FP0

ImFf = FP0

KerFg
∼= FA (by the 1st iso theorem sinceFg epic).

Contravariant: Use an injective resolution instead. The process is the same.

Does “left derived functor of left exact functor” make sense? Are they all just trivial or some-
thing? To prove something like that, would you use a left exact variant of “exact functors pre-
serves LES’s”?

Theorem 3 (LES of derived functors). Do this.

If derived functorsmeasure the extent towhich a functor fails to be exact, then an exact functor should
have trivial derived functors. This turns out to be true.

Proposition 9. IfF is exact, thenRiF = LiF = 0 for all i > 0.

Proof. This uses the fact that exact functors preserves LES’s... prove this. Covariant: Exact functors
preserve exactness, so 0 → A↣ I0 → I1 → · · · exact implies 0 → FA → FI0 → FI1 → · · · exact.
Chopping off the FA term and taking cohomologies gives LiF = 0 when i > 0. Now repeat the
argument with a projective resolution for theRi.

Contravariant: Similar argument.

Proposition 10. Fix a functor F . If A is projective/injective (depending on the type of F), then
RiF(A) orLiF(A) (whichever is correct forF ) is trivial when i > 0.

Proof. We consider the case whenF is left exact and covariant, but the other three cases are similar. Sup-
pose A is injective, then 0 → A

id→ A → 0 is an injective resolution of A. This induces the exact
sequence 0 → FA

id→ FA → 0. Chopping off the first FA term and taking cohomologies gives
RiF(A) = 0.



2.3 T H E E X T F U N C T O R

Note 3. Big idea: the hom functors are left exact, but we can use cohomology tomeasure howmuch
they fail to be right exact.

Definition 9. The Ext functors are the (right) derived functors of the hom functors.

Given anR-moduleA, there are two equivalent ways to construct them:

1. UsingHom(−,M) (contravariant): Take a projective resolution

· · · Pn Pn−1 · · · P0 A 0
dn dn−1 d1 ε

and apply Hom(−,M) to it. Removing Hom(A,M) from the sequence gives

0 Hom(P0,M) Hom(P1,M) · · · .d∗
1 d∗

2

This is a cochain complex since for any map f , applying d∗ twice gives d∗2(f) = fd2 = 0. Then
ExtnR(A,M) is the n-th cohomology group of this complex.

2. Using Hom(M,−) (covariant): Take an injective resolution, apply Hom(M,−), then remove
Hom(M,A), then take homology. Is this actually equivalent?

Proposition 11. Ext0R(A,M) ∼= HomR(A,M).

Proof. The hom functors are left exact, so apply Proposition 7.

Ext(A,B) is contra in A, cov in B.
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