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1 CHAIN COMPLEXES

1.1 CHAIN COMPLEXES

Want a more intuitive view of left/right exact functors, maybe in terms of lifts/ extensions.

Definition 1. A chain complex C is a sequence of R-morphisms

d;

diy2 dit1 di—1
Cit1 Ci Ciog — -+~

such that d> = 0 for all i. Cochain complexes are the same, except the boundary maps take you up
alevel instead of down.

di—1 ci-1 d; Ci dit1 Cit1 diy2

The map d; is the boundary operator, as it is a generalization of the geometric concept of a boundary
(note d*> = 0). Thus an element of Im d is a boundary. Since usual geometric cycles have no boundary,
we call the elements of Ker d cycles.

Example 1. Chain complexes generalize the concept of boundaries to objects that don’t necessar-
ily have clear cyclic geometric properties. Let 2, (M) denote the space of differential n-forms on a
manifold M, then we have a cochain complex

Qo(M) —L Qi (M) —% Qp(M) —L -

where d is the exterior derivative. From this we see that the cycles of (M) (the space of differen-
tiable functions on M) are the constant functions.

A morphism of complexes/chain morphism f : C — D isasequence of morphisms f; : C; — D;
respecting the boundary map, i.e. making the following diagram commute.

d
Ci =, Ci—l

A e

Di —_— Di—l
dp



12 CHAIN HOMOTOPIES

Definition 2. Given two chain complexes A, B3, two chain morphisms f, ¢ : A — B are (chain)
homotopic, written f =~ g, if there are morphisms s; : A; — B;_1 such that

ds+sd=f—g.

If A, B are cochain complexes instead, then s; : A; — Bj11.

d d
Ai—l —_— Az —_— A1’,+1

.
Si 7 ///
7 fil |9 -

. )
v v Si+1

B;_1 — B; — By

Motivation for this?

Definition 3. A chain morphism f : A — B is a homotopy equivalence if there’s another chain
morphism g : B — Asuchthat fg ~ 1pandgf ~ 14.

Proposition 1. Additive functors preserve homotopy equivalence.

Proof. Let f ~ g. If Fisadditive and covariant, thend's+sd = f—g = F(d')F(s)+F(s)F(d) =
Ff—Fg. Thus F f ~ Fg.If G isadditive and contravariant, then G(d)G(s) = G(s)G(d') = Gf —Gg.
Since all the arrows are reversed, the LHS is the right form,so G f ~ Gg. O




13 HOMOLOGY

Note 1. Bigidea: given some module, we always have a way of getting a chain complex (take a reso-
lution). Chain complexes by themselves aren’t nice, though: they might be unwieldy or unnatural,
similar objects might have dissimilar complexes, etc. Passing to homology makes these problems go
away, though, giving us access to nice algebraic invariants.

Definition 4. The n-th homology group H,,(C) of a chain complex C is the kernel of the map
going out of C), quotiented by the image of the map coming into C,,. Cochain complexes have

cohomology groups H™(C) instead.

Proposition 2. A chain/cochain complex is exact <= all its homology/cohomology groups are
trivial.

Thus the (co)homology groups of a (co)chain complex measure how much it fails to be exact.

Proposition 3. A morphism of complexes f : A — B induces group morphisms between the
complexes’ homology/cohomology groups given by [a] — [f,(a)].

Arl —y An  pnl H"(A)
| | -
Bl pn _, pn+l H"(B)

Proof. This follows from the morphism of complexes respecting the boundary map and thus mapping the
kernels and images of the first complex to the kernels and images of the second.

Proposition 4. If f, is the induced (co)homology map of f, then (¢f)+ = g« f«.

Definition 5. 0 — A — B — C — 0isashort exact sequence of complexes ifeach0 — A" —
B"™ — C™ — 0is short exact.




Lemma 1 (Snake Lemma). If the following diagram has exact rows,

A B C 0
bl b
0 A’ B’ o

then there is an induced exact sequence

Kerao — Ker f — Kery — Coker o — Coker 5 — Coker~y.

Theorem 1 (Long Exact Sequence in Cohomology). If0 — A — B — C — 0is a short exact
sequence of complexes, then there is a long exact sequence of cohomologies

0— H°(A) —» H°(B) — H°(C)
— H'Y(A) — H'(B) = H*(C)
— H*(A) — -+

where the morphisms H™(C) — H"!(A) are the connecting morphisms.

Proof. Intuition? Use snake lemma (have proof of this in spectral sequences paper).

Corollary 1. If0 — A — B — C — 0is exact and any 2 of the complexes are exact themselves,
then so is the third.

Proof. The LES of cohomologies becomes all 0, except for each H™(X'), where X is the third complex.

Now 0 — H™(X) — Oexact = H"(X) = 0,s0 X is exact. O
Definition 6. A morphism of complexes is a quasi-isomorphism if the (co)homology maps it in-
duces are all iso.

Lemma 2. If f ~ g, then they induce the same (co)homology maps, i.e. fx = g.

Proof. Suppressing subscripts, suppose f = d's + sd, then the induced map is

[a] = [f(a)] = [(d's)(a) + (sd)(a)] = [d'(s(a)) + 5(0)] = [0].

Thenif f ~ g, wehave [f(a)] = [(g + d's + sd)(a)] = [g(a)]. O
Proposition 5. A homotopy equivalence is a quasi-iso.

Proof. Suppose f and g are inverse chain homotopies, then by the lemma, f.g. = (fg)« = (1)« =

1 () and, similarly, g f« = 15 (4). Thus H"(A) = H™(B) for all n. O




2 DERIVED FUNCTORS

21 RESOLUTIONS

Definition 7. Suppose A is an R-module, then a projective resolution over A is an exact sequence
of projective R-modules

dn dn—l d1

b,

P, Py —— A 0

and a injective resolution over A is an exact sequence of injective R-modules

0 Aty 4. D

Theorem 2 (Existence). Every R-module has a projective and injective resolution.

Proof. Let A be an R-module, and let Py be free on A. Then there’s a unique R-morphisme : Py — A
extending 1 4. It’s clearly epic, so Py 5 A — 0is exact. Now let P; be free on Ker ¢, then there’s a

unique R-morphism d; : Py — Kere,so P = P =5y Aisexact. Continue inductively, with P, free

on Ker d,,. Since each F; is free, each is projective. O
Proposition 6. R-morphisms lift to morphisms of projective/injective resolutions that are unique
up to chain homotopy.

P Py A 0
T
P/ P A 0
0 A Iy I
lg i 9o i g1
0 Al I I

Proof. Inductively use the fact that all the P;, P/ are projective and I;, I] are injective to get each f,, and
gn- Chain homotopy bit. O



Corollary 2. Any two projective/injective resolutions of the same module are homotopy equivalent.

Proof. Consider the following lifts to projective resolutions (the case of injective resolutions is similar).

P—A——0

if- llA

Pr—sA——0

I
:g- llA
~

P—A——0

The identity map is a valid candidate for each gy, fpn, so gn fr, = 1. Now flip the diagram upside down and
use the same f,, and g,, maps, yielding fr, g, ~ 1. O

Corollary 3. Any two projective/injective resolutions have isomorphic (co)homology groups.

Proof: They’re homotopy equivalent, so they’re quasi-isomorphic by Proposition 5. O

Maybe start this section more generally, with left and right resolutions...



22 DERIVED FUNCTORS

Note 2. Bigidea: aleft exact covariant functor F can turn a SES into a short left exact sequence, but
there is only one canonical way to extend this to a LES, and that’s with right derived functors. Left
derived functors do the same for right exact functors.

Suppose we apply an additive functor F to some projective/injective resolution of a module A. The
(co)homology groups of the resulting complex are unique up to isomorphism:

* Let X', Y be projective/injective resolutions of A, then they’re homotopy equivalent by Corollary 2.

* By Proposition 1, additive functors preserve homotopy equivalence, so /X and F) are also homo-
topy equivalent.

* By Proposition 5, homotopy equivalent complexes have isomorphic (co)homology groups.

Thus we can define the (co)homology groups of the sequence gotten by applying an additive functor
JF to a projective/injective resolution of A using any resolution.

Definition 8. Let F be an additive(????) functor and A an R-module, then choose a resolution
of A from the following chart based on F.

Left exact, covariant injective
Left exact, contravariant projective
Right exact, covariant projective
Right exact, contravariant injective

Apply F to the resolution, remove the F A term from it, then take (co)homologies. If F is left exact,
the cohomologies R'F are the right derived functors of F. If F is right exact, the homologies L; F
are the left derived functors of F.

I don’t think the derived functors depend on A at all, they can just be applied to A, etc. to
get new objects...
With left exact functors, we end up with induced sequences of the form

O‘).FXO*).FX:[‘).FXQ*}"',

thus why the derived functors are “right”. Similarly, for right exact functors, we end up with induced
sequences of the form

fX2—>.FX1—>fX0—)O,

thus why the derived functors are “left”. As examples, see the next two propositions.
Can you get both sets of sequences at once if F is exact?
They’re actually functors.... b/c (co)homology is a functor.
More detail about why we choose inj or proj resolution.

Proposition 7. If F is left exact, then ROF = F.

F
Proof. Covariant: If 0 — A i> Io > I is exact, then sois 0 — FA >—J>c Fly };? FI;. Then
ROF(A) = Ker(Fg) = Im(Ff) = F(A) (by the Ist iso theorem since F f monic).

Contravariant: Use a projective resolution instead. The process is the same. O



Proposition 8. If F is right exact, then Lo F = F.

_7_-
Proof. Covariant: If P, L Py Ao 0 is exact, then so is F P }l FP 3 FA — 0. Then
LoF(A) = Irf.l;;of = Kfrl;_?g = F A (by the Istiso theorem since F g epic).
Contravariant: Use an injective resolution instead. The process is the same. O

Does “left derived functor of left exact functor” make sense? Are they all just trivial or some-
thing? To prove something like that, would you use a left exact variant of “exact functors pre-
serves LES’s”?

Theorem 3 (LES of derived functors). Do this.

If derived functors measure the extent to which a functor fails to be exact, then an exact functor should
have trivial derived functors. This turns out to be true.

Proposition 9. If F is exact, then R'F = L;F = O foralli > 0.

Proof. This uses the fact that exact functors preserves LES’s... prove this. Covariant: Exact functors
preserve exactness, so 0 — A »— Iy — I; — - - - exactimplies0 = FA — Fly = FI; — -+ exact.
Chopping off the F A term and taking cohomologies gives L; 7 = 0 when ¢ > 0. Now repeat the
argument with a projective resolution for the R'.

Contravariant: Similar argument. O

Proposition 10. Fix a functor F. If A is projective/injective (depending on the type of F), then
R'F(A) or L; F(A) (whichever is correct for F) is trivial when i > 0.

Proof. We consider the case when F is left exact and covariant, but the other three cases are similar. Sup-
p

e id . e . ..
pose A is injective, then 0 — A — A — 0 is an injective resolution of A. This induces the exact

sequence 0 — FA i—d> FA — 0. Chopping off the first FA term and taking cohomologies gives
RIF(A) =0. O



23 THE EXT FUNCTOR

Note 3. Bigidea: the hom functors are left exact, but we can use cohomology to measure how much
they fail to be right exact.

Definition 9. The Ext functors are the (right) derived functors of the hom functors.
Given an R-module A, there are two equivalent ways to construct them:
1. Using Hom(—, M) (contravariant): Take a projective resolution

dy dpn—1 d
"'4>Pn4>Pn71 n 1

Pp—=- A 0
and apply Hom(—, M) to it. Removing Hom(A, M) from the sequence gives

0 —— Hom(Py, M) —1 Hom(Py, M) —2 ... .

This is a cochain complex since for any map f, applying d* twice gives d*? (f) = fd? = 0. Then
Ext}; (A, M) is the n-th cohomology group of this complex.

2. Using Hom(M, —) (covariant): Take an injective resolution, apply Hom(M, —), then remove
Hom(M, A), then take homology. Is this actually equivalent?

Proposition 11. Ext% (A, M) = Hompg(A, M).

Proof. The hom functors are left exact, so apply Proposition 7. O

Ext(A,B) is contra in A, cov in B.
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