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1 B A S I C D E F I N I T I O N S

Intuitively, σ-algebras contain the subsets of a space which we care about measuring.

Definition 1. Let P (X) denote the power set ofX . ThenA ∈ P (X) is a σ-algebra onX if

1. ∅, X ∈ A;

2. ifA ∈ A, thenAc ∈ A;

3. if {Ai} ⊂ A is countable then
∪

i Ai ∈ A.

EachA ∈ A is ameasurable set.

Proposition 1. If {Ai} is an arbitrary collection of σ-algebras onX , then so is
∩

i Ai.

This lets us define a σ-algebra generated by a set of subsets.

Definition 2. LetM ⊂ P (X) be a family of subsets ofX . Thenσ(M) is theσ-algebra generated
byM, defined by the intersection of all σ-algebras onX containing each element ofM.

Example 1. Suppose (X, T ) ∈ Top, thenB(X) := σ(T ) is the Borel σ-algebra.

Measures are maps that measure an element of a σ-algebra (a measurable subset of a space). We want
such maps to have intuitive properties of volume. The main one is that we can calculate the volume of
something by breaking it up into (perhaps countably infinite) subvolumes and measuring those volumes
instead.

Definition 3. (X,A) is ameasurable space. A map µ : A → [0,∞] is ameasure if

1. µ(∅) = 0;

2.
∑∞

i=0 µ(Ai) = µ (∪∞
i=1 Ai) for any countable collection of disjointAi (µ is “σ-additive”).

(X,A, µ) is ameasure space.

Example 2. The counting measure is given by

µ(A) :=

{
number of elements inA ifA is finite,
∞ else.
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Example 3. TheDirac measure for p ∈ X is

δp(A) :=

{
1 p ∈ A,

0 else.

We also want to define the “normal”measure onRn. It should definitely have the following two prop-
erties:

1. µ([0, 1]n) = 1 (the unit hypercube has measure 1);

2. µ(x+A) = µ(A) for all x ∈ Rn (measure is translation-invariant).

Note by extension, this first property becomes µ([a, b]n) = (b − a)n for all a < b. As it turns out, it’s
impossible to construct such a measure on all of P (Rn). Instead, we’ll have to construct it on a particular
σ-algebra inside of P (Rn). We’ll call this the Lebesgue measure.

Proposition 2. The Lebesguemeasure does not exist on all ofP (Rn), except for the trivial measure
µ = 0.

Proof. We’ll show something more general: Let I0 := (0, 1], and suppose µ(I0) = ε < ∞ and µ(x +
A) = µ(A). Define equivalence classes on R by x ∼ y ⇐⇒ x − y ∈ Q. Note that this forms
uncountably many equivalence classes. Define A ⊂ I0 by choosing one element from each equivalence
class (this requires the axiom of choice). We’ll now form countablymany “shifted” versions ofA that cover
I0, and use these to show that I0 has measure 0 (from this, it’ll follow that µ(R) = 0).

Let Ai := ri + A, where {ri} enumerates Q ∩ (−1, 1], then I0 ⊂ ∪ i Ai ⊂ (−1, 2]. Then by
σ-additivity and translation invariance,

ε = µ(I0) ≤ µ (∪ i Ai) =

∞∑
i=1

µ(Ai) =

∞∑
i=1

µ(A) ≤ µ((−1, 2]) = 3ε.

But
∑∞

i=1 µ(A) = ∞ if µ(A) > 0, so µ(A) = 0. Then µ(I0) ≤ µ (∪ i Ai) = 0, and

µ(R) = µ

(∪
n∈N

(n+ I0)

)
=
∑
n∈N

µ(n+ I0) =
∑
n∈N

0 = 0.

Thus, µ = 0, as any setX ∈ P (R) has measure µ(X) ≤ µ(R) = 0. Higher dimensions
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2 T H E L E B E S G U E I N T E G R A L

Definition 4. For measurable spaces (Ωi,Ai), a map f : Ω1 → Ω2 ismeasurable if

f−1(A2) ∈ A1 for allA2 ∈ A2.

Describe intuition here w/ integral figure

Example 4. The indicator function IA is measurable ifA is a measurable set.

Proposition 3. Given measurable maps

Ω1 Ω2 Ω3
f g

the composition g ◦ f is also measurable.

Example 5. Given measurable f, g : Ω → R, the maps f ± g, f · g, and |f | are also measurable.

Todefine theLebesgue integral, we’ll start by defining it for simple functions (step functionswithfinite
range), then extend it. We’ll use it to integrate measurable functions f : Ω → R (where R is implicitly
equipped with the Borel σ-algebra).

Take a simple function h ∈ SmappingΩ → R by

h =

N∑
i=1

ciIAi

for disjoint measurable Ai. Note that h is measurable since x 7→ ci and IAi
are measurable for all i. We

can define the integral of h to be

I(h) :=

N∑
i=1

ci µ(Ai),

which agrees with the intuition that the integral captures the area under the graph of a function (although
this is now clearly generalizable to arbitrary dimensions, as long asΩ has a measure µ).

There’s a problem here: suppose h = 2IA1
− 3IA2

and µ(A1) = µ(A2) = ∞, then the integral
evaluates to I(h) = 2 ·∞− 3 ·∞, which is undefined behavior so far. We have twomain options to deal
with this:

1. Only define the integral for simple maps with |ci| < ∞ and µ(Ai) < ∞ for all i.

2. Enforce ci ≥ 0 for all i (i.e. h ≥ 0), then we can keep using∞without this problem.

We’ll do the second option.
The representation of a simple function doesn’t matter.
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Definition 5. Denote the space of non-negative simple mapsΩ → R by S+. For h ∈ S+, choose a
representation

h =

N∑
i=1

ciIAi

with ci ≥ 0 for all i. Then the Lebesgue integral of hwrt µ is∫
Ω

f dµ := I(h) =

N∑
i=1

ci µ(Ai).

Now let f : Ω → [0,∞] be anymeasurable map. Then the Lebesgue integral of f is∫
Ω

f dµ = I(f) := sup
{
I(h) | h ∈ S+, h ≤ f

}
.

Ameasurable map f is µ-integrable if
∫
Ω
f dµ < ∞.

Intuition here w/ sketch
A nice property of the Lesbesgue integral is that sets of measure 0 don’t change its value.

Proposition 4. ForB ⊂ Ωwith µ(B) = 0,∫
Ω

f dµ =

∫
Ω−B

f dµ

for all measurable f ≥ 0.

Proof. Let h ∈ S+, then h =
∑N

i=1 ciIAi
for disjointAi. We can split this up as

h =

N∑
i=1

ciI(Ai ∩ Bc) +

N∑
i=1

ciI(Ai ∩ B).

Since 0 ≤ µ(Ai ∩ B) ≤ µ(B) = 0 for all i, the integral of h is

I(h) =

N∑
i=1

ciµ(Ai ∩ Bc) +

N∑
i=1

ciµ(Ai ∩ B)

=

N∑
i=1

ciµ(Ai ∩ Bc) +

N∑
i=1

0

= I(h|Ω−B).

This result is nice because it lets us care about properties that hold µ-a.e. instead of everywhere. In
general, a property holds µ-a.e. if the set of points for which it doesn’t hold has measure 0.
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Proposition 5. Properties of the Lebesgue integral for general measurable maps:

1. Linearity: I(αf + βg) = αI(f) + βI(g).

2. Monotonicity: if f ≤ g µ-a.e., then I(f) ≤ I(g).

3. If f = g µ-a.e., then I(f) = I(g).

4. f = 0 µ-a.e. ⇐⇒ I(f) = 0.
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3 C O N V E R G E N C E T H E O R E M S

The first two theorems in this section cover measurable maps f ≥ 0. Lebesgue’s dominated convergence
theorem applies to any measurable map.

Theorem 1 (Monotone Convergence Theorem). For measurable {fn} , f : Ω → [0,∞] such that

1. fn ≤ fn+1 for all n;

2. limn→∞ fn = f µ-a.e.;

then
lim

n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

Proof. Since fn ≤ fn+1 µ-a.e. for all n, and since fn → f µ-a.e., we get that fn ≤ f µ-a.e. Then by
monotonicity of the integral,∫

Ω

fn dµ ≤
∫
Ω

f dµ for all n =⇒ lim
n→∞

∫
Ω

fn dµ ≤
∫
Ω

f dµ.

Proving the opposite inequality is a bit more involved. Write this part down.

Define the limit inferior of a sequence of functions as follows:

lim inf
n→∞

fn(x) := lim
n→∞

(
inf
k≥n

fk(x)

)
.

Using this, we can derive Fatou’s Lemma, which is a weak result but requires only weak conditions.

Theorem 2 (Fatou’s Lemma). Let fn : Ω → [0,∞] be measurable. Then∫
Ω

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
Ω

fn dµ.

Proof. Let gn := infk≥n fk, then gi ≤ gi+1 for all i. Then by the MCT,∫
Ω

lim
n→∞

gndµ = lim
n→∞

∫
Ω

gndµ = lim inf
n→∞

∫
Ω

gndµ ≤ lim inf
n→∞

∫
Ω

fndµ.

Note that the second equality is true b/c whenever a limit exists, it’s equal to the limit inferior/superior.
The last inequality is true because gn ≤ fn for all n.

Theorem 3 (Lebesgue’s Dominated Convergence Theorem). Let fn, f : Ω → R be arbitrary
measurable maps, with fn → f pointwise µ-a.e. If there is some g ∈ L1 such that |fn| ≤ g for all
n (µ-a.e.), then fn, f ∈ L1 for all n and

lim
n→∞

∫
Ω

fn dµ =

∫
Ω

f dµ.
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4 C A R AT H É O D O RY ’ S E X T E N S I O N T H E O R E M

Definition 6. A family of subsetsA of a setΩ is a semiring of sets if

1. ∅ ∈ A;

2. it is closed under pairwise intersections;

3. complements can be written as finite disjoint unions, i.e. for A,B ∈ A, there are pairwise
disjoint sets S1, . . . , Sn ∈ A such that

∪n
i=1 Si = A−B.

Definition 7. LetA be a semiring of sets, then µ : A → [0,∞] is a premeasure if

1. µ(∅) = 0;

2. µ (
∪∞

i=1 Ai) =
∑∞

i=1 µ(Ai) for all pairwise disjointAi ∈ A if this union is inA (sinceA
isn’t necessarily a σ-algebra, this union might not actually be a member ofA).

Theorem 4 (Carathéodory’s Extension Theorem). LetA ⊂ P (Ω) be a semiring of sets, and let µ
be a premeasure onA.

1. Existence: µ has an extension µ̃ : σ(A) → [0,∞] that’s ameasure. Here, being an extension
means µ and µ̃ agree on allA ∈ A.

2. Uniqueness: ifΩ can be covered by a sequence of sets inA, each of which has finite measure
under µ, then µ̃ is unique (this condition says that µ must be σ-finite, so other equivalent
characterizations of σ-finiteness would work here too).

An important application of this theorem is proving the existence of the Lebesgue measure. LetA =
{[a, b) | a, b ∈ R, a ≤ b}, which is a semiring of sets w/ σ(A) = B(R). Now define µ : A → [0,∞]
by µ([a, b)) = b− a, which is a σ-finite premeasure onA. Then by Carathéodory’s Extension Theorem,
there’s a unique extension of µ that’s a measure on B(R). This is the Lebesgue measure.

4.1 L E B E S G U E - S T I E LT J E S M E A S U R E S

Let F : R → R be monotonically non-decreasing (can be discontinuous), and define

µ([a, b)) := F (b−)− F (a−),

where x− := limε↘0 F (x− ε). Then by Carathéodory’s Extension Theorem, there is a unique measure
µF : B(R) → [0,∞] such that µF ([a, b)) = F (b−)−F (a−). This is the Lebesgue-Stieltjes measure
for F . Figure

• If F = id, then µF is the Lebesgue measure.

• If F is a constant map, then µF = 0.
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• Fix α, and define F by

F (α) =

{
0 x < α,

1 x ≥ α.

Then

µF ([a, b)) =

{
1 α ∈ [a, b),

0 else.

Note that for all ε > 0, µF ([α − ε, α + ε)) = 1. The Dirac measure at α also does this, so by
uniqueness, µF = δα.

• Let F : R → R be monotonically non-decreasing but also continuously differentiable, i.e. F ′ :
R → [0,∞) is continuous (this means we don’t have to worry about jumps or left limits anymore).
Then

µF ([a, b)) = F (b)− F (a) =

∫ b

a

F ′(x) dx.

More generally, we can define a density map

µF : B(R) → [0,∞]

A 7→
∫
A

F ′(x) dx.
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5 D E C O M P O S I T I O N T H E O R E M S

Let λ denote the Lebesgue measure on B(R). In this section, we’ll be interested in other measures on
B(R).

Definition 8. Ameasure µ is absolutely continuouswrt λ if

λ(A) = 0 =⇒ µ(A) = 0;

i.e. µ is not “finer” than λ. Notation: µ � λ.

Definition 9. Ameasure µ is singularwrt λ if there is someN ∈ B(R) such that

λ(N) = 0 and µ(N c) = 0.

Notation: µ ⊥ λ.

Example 6. Let δα be the Dirac measure at α, then δα ⊥ λ. To see this, let N = {α}, then
λ(N) = 0 and δα(N c) = δα(R− {α}) = 0.

Theorem 5. Let µ : B(R) → [0,∞] be a σ-finite measure.

1. Radon-Nikodym Theorem: There exist 2 uniquely determined measures µac, µs on B(R)
such that

• µ = µac + µs;
• µac � λ (absolutely continuous);
• µs ⊥ λ (singular).

2. Lebesgue’s Decomposition Theorem: There exists a measurable map (a density map) h :
R → [0,∞) such that

µac(A) =

∫
A

h dλ

for allA ∈ B(R). In other words, if a measure is absolutely continuous wrt λ and is σ-finite,
then we can rewrite it as an integral wrt λ.

Lebesgue’s decomposition theorem converts a very abstract concept (a measure) into something more
concrete (a density, which is just a normal function). And by Radon-Nikodym, we can think about any
generalmeasure as having twoorthogonal components: an “easy-to-use” componentµac thatwe can trans-
form into a density, and a residual component µs that we know is singular.

Note 1. Nothing in this section was a special property of B(R). This all could’ve been written in
terms of two arbitrary measure spaces (Ω1,A1, µ) and (Ω2,A2, λ).
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6 C H A N G E O F VA R I A B L E S

Given a measurable map f : (Ω1,A1, µ) → (Ω2,A2), we can define the pushforward measure f∗µ on
Ω2 by

f∗µ := µ ◦ f−1.

Theorem 6 (Change of variables). Suppose there are measurable maps

(Ω1,A1, µ) (Ω2,A2) R.f g

Then ∫
Ω2

g d(f∗µ) =

∫
Ω1

(g ◦ f) dµ.

Proof. Put theorem about approximating measurable function w/ increasing sequence of simple
functions. Consider the case when g = IA for someA ∈ A2. Then this holds by defintion:∫

Ω2

IA d(f∗µ) = (f∗µ)(A) = µ(f−1(A)) =

∫
Ω1

If−1(A) dµ =

∫
Ω1

(IA ◦ f) dµ.

By linearity of the integral, we can extend this to the case where g is any simple function. Now let g be an
arbitrary measurable mapΩ2 → R, and take a sequence of simple functions h1 ≤ h2 ≤ · · · approximat-
ing it from below. Then (h1 ◦ f) ≤ (h2 ◦ f) ≤ · · · is an increasing sequence of functions approximating
h ◦ f from below. Since the change of variables formula works for simple functions, we apply the MCT
twice to get∫

Ω2

g d(f∗µ) = lim
n→∞

∫
Ω2

hn d(f∗µ) = lim
n→∞

∫
Ω1

(hn ◦ f) dµ =

∫
Ω1

(h ◦ f) dµ.

This is a more general form of the usual change of variables for 1-dimensional riemann integrals∫
R
g(x) dx =

∫
R
g(f(x) · f ′(x) dx.

To see this, consider the casewhenwehave a surjective, strictlymonotonically increasing, and continuously
differentiable map F : (R,B(R), µF ) → (R,B(R)). By Carathêodory’s extension theorem, we can
determine the pushforward measure by where it sends intervals:

(F∗µF )([a, b)) = µ
(
F−1

(
[a, b)

))
= µF

([
F−1(a), F−1(b)

))
(since F is strictly monotonically increasing)

=

∫ F−1(b)

F−1(a)

F ′(x) dx.

Making a change of variables y := F (x), this becomes

(F∗µ)([a, b)) =

∫ b

a

dy = λ([a, b)).
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Thus F∗µF is actually just the Lebesgue measure λ. Then in this case, the change of variables formula
simplifies to ∫

R
g(x) dx =

∫
R
g d(F∗µF ) =

∫
R
(g ◦ F ) dµF =

∫
R
g(F (x)) · F ′(x) dx.
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