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1 M O D U L E S

1.1 M O D U L E S A N D A L G E B R A S

Modules are a generalization of vector spaces, replacing the field of scalars with a unital ring of scalars.

Definition 1. LetR be a unital ring. A (left) R-module is an additive abelian groupM with a left
actionR×M →M satisfying

1. λ(x+ y) = λx+ λy;

2. (λ+ µ)x = λx+ µx;

3. λ(µx) = (λµ)x; and

4. 1Rx = x.

Right R-modules are defined similarly. An (R,S)-bimodule is both a left R-module and a right
S-module satisfying (rm)s = r(ms).

I denote left modules byM : (R,−), right modules byM : (−, R), and bimodules byM : (R,S).

Example 1. Z-modules and abelian groups are the same thing. Every rightR-module is also a (Z, R)-
bimodule.

Proposition 1. Basic properties of modules:

1. λ0M = 0M ;

2. 0Rx = 0M ;

3. λ(−x) = −(λx) = (−λ)x.

IfR is a division ring, then we also have

4. λx = 0M =⇒ λ = 0R or x = 0M .

WhenR is commutative, any leftR-module can be given the structure of a rightR-module (and vice
versa) by defining xλ .

= λx. Thus left and rightR-modules are the same thing in this case. If F is a field,
then an F -module is the same thing as an F -vector space.
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The definition of modules gives us addition and scalar multiplication, but we still don’t have a way of
multiplying module elements together. Providing this is exactly the role of an algebra, which adds a ring
structure to a module.

Definition 2. LetR be a commutative unital ring. AnR-algebra is anR-moduleM along with a
“multiplication” map

M ×M →M

(x, y) 7→ xy.

This map distributes over addition and satisfies

λ(xy) = (λx)y = x(λy).

We can form more specific types of algebras by putting restrictions on the multiplication map. Asso-
ciative and commutative algebras have associative and commutative multiplication maps, respectively.
A unital algebra has a multiplicative identity. A division algebra is a unital associative algebra in which
every nonzero element has a multiplicative inverse.



1.2 S U B M O D U L E S

A module is just an abelian group with a left action, so we can define a submodule to be just a subgroup
that respects this action.

Definition 3. A submodule of an R-moduleM is a subgroup ofM that is closed under the left
action ofR onM .

AmoduleN is a submodule ofM if and only ifN is closed under subtraction and scalarmultiplication
(the subtraction emcompasses both addition and additive inverses). From thiswe infer the following simple
characterization of a submodule.

Proposition 2. N is an submodule ofM if and only if

λx+ µy ∈ N

for all x, y ∈ N and λ, µ ∈ R.

Thus given any set S ⊆ M , we can form a submodule of M by adding in all linear combinations
of the elements of S (remember that linear combinations are by definition finite sums, so the induction
works). This could be a good enough definition of 〈S〉, but we have to make sure that we aren’t adding in
any unnecessary terms. The following definition ensures this is the case, the next proposition shows that
the definition makes sense, and the following theorem shows that our definition is equivalent to the linear
combination approach.

Definition 4. Given a setS ⊆M , let the generating set 〈S〉 be the intersection of all submodules
ofM containing S.

Proposition 3. If {Mα}α is a family of submodules ofM , then
∩

α Mα is also a submodule ofM .

Theorem 1. Let S ⊆M , and letLC(S) denote the set of all linear combinations of S. Then

〈S〉 =

{
{0} if S = ∅,

LC(S) otherwise.

Proof. The caseS = ∅ is clear since all subgroupsmust contain 0, so assumeS is nonempty. It’s clear that
LC(S) is a submodule ofM . Since S ⊆ LC(S), this means LC(S) is a submodule ofM containing
S, i.e. 〈S〉 ⊆ LC(S). But every linear combination of S must be in any submodule containing S, so
LC(S) ⊆ 〈S〉 too. Thus 〈S〉 = LC(S).

If {Mα}α is a family of submodules of M , then
∪

α Mα won’t be a submodule in general (unlike∩
α Mα), but it can certainly generate one. 〈∪αMα〉 can be interpreted as the smallest submodule ofM

containing each of theMα, and we can construct it by once again filling in all the missing linear combina-
tions.



Proposition 4. LetA be some index set, and letP⋆(A) denote the set of all nonempty finite subsets
ofA. Then 〈

∪
α Mα 〉 is all finite sums of the form∑

β∈B

mβ ,

where B ∈ P⋆(A) andmβ ∈Mβ .

Proof. All linear combinations of the elements of
∪

α Mα is this form, and LC = 〈
∪

α Mα 〉 by Theo-
rem 1 since

∪
α Mα is nonempty (it must contain 0).

This motivates the notation ∑
α

Mα
.
= 〈

∪
α

Mα 〉

and the terminology “sum of the family {Mα}α.”



1.3 M O R P H I S M S

As usual, anR-morphism respects the structure ofR-modules.

Definition 5. AnR-morphism is a map f : M → N betweenR-modules satisfying

1. f(x+ y) = f(x) + f(y);

2. f(λx) = λf(x).

Note that ifR is a field, then anR-morphism is just a linear map. Also note that if f : M → N is an
R-morphism, then Ker f is a submodule ofM and Im f is a submodule ofN .

Proposition 5. Basic properties anR-morphism f : M → N .

1. f(0M ) = 0N .

2. f(−x) = −f(x).

Because we like to be fancy, we’ll use categorical language to describe specific types ofR-morphisms:

R-monomorphism : M ↣ N,

R-epimorphism : M ↠ N.

It’s straightforward to show that the inverse of a bijectiveR-morphism is also anR-morphism, i.e. anR-
isomorphism is just a bijectiveR-morphism. The usual properties of composedmorphisms of course hold
too:

• The composition of morphisms/monos/epis is a morphism/mono/epi.

• If gf is mono, then so is f .

• If gf is epi, then so is g.

As you might expect, a map between modules induces maps between their submodules.

Proposition 6. Suppose we have an R-morphism f : M → N . Then for any submoduleX of
M , the image f(X) is a submodule ofN . Additionally, for any submodule Y ofN , the preimage
f−1(Y ) is a submodule ofM .

These maps induce maps between the entire submodule latticesL(M) andL(N):

L(M) L(N)

f→

f←

f→ : X 7→ f(X)

f← : Y 7→ f−1(Y )

Is there a way to generalize this to something other than modules? If we have a morphism
f : X → Y , will f(x) and f−1(y) have that proerty if x and y have the property, respectively?
Is the defn of R-morphism really just saying that it preserves module-ness by respecting linear
combs?

f inj: There is a map g : B → A such that gf = 1A.
f surj: There is a map g : B → A such that fg = 1B .



1.3.1 E X A C T S E Q U E N C E S

Definition 6. A covariant functor F is one of the below if it preserves exactness in the manner
depicted.

exact
left exact

right exact

A→ B → C ⇝ 0→ FA→ FB → FC → 0

0→ A→ B → C ⇝ 0→ FA→ FB → FC
A→ B → C → 0 ⇝ FA→ FB → FC → 0

The following apply to a contravariant functor G instead.

exact
left exact

right exact

A→ B → C ⇝ 0→ GC → GB → GA→ 0

A→ B → C → 0 ⇝ 0→ GC → GB → GA
0→ A→ B → C ⇝ GC → GB → GA→ 0

Theorem 2 (Five Lemma). Suppose the following diagram commutes and has exact rows.

A B C D E

A′ B′ C ′ D′ E′

α1 α2 α3 α4 α5

If α1, α2, α4, α5 are iso, then so is α3.

Proof. Apply the Four Lemma to the first three squares to show that α3 is monic, and to the last three
squares to show that α3 is epic. Since it’s anR-morphism, this is enough to show it’s iso.

Corollary 1 (Short Five Lemma). Suppose the following diagram commutes and has exact rows.

0 A B C 0

0 A′ B′ C ′ 0

α β γ

If α, γ are iso, then so is β.

Theorem 3 (Four Lemma). Suppose the following diagram commutes and has exact rows.

A B C D

A′ B′ C ′ D′

α β γ δ

Then the following hold:

1. If α, γ are epic and δ is monic, then β is epic.



2. If α is epic and β, γ are monic, then γ is monic.

1.3.2 S P L I T S E Q U E N C E S

Definition 7. A short exact sequence 0 → A ↣ B ↠ C → 0 splits if there is an isomorphism
making the following diagram commute,

0 A B C 0

A⊕ C

iA
∼ πC

where iA and πC are natural.

An epi need not have a left morphism inverse, but if it does, it’s called a split epimorphism. Similarly,
a mono with a right morphism inverse is called a split monomorphsm.

Definition 8. The sequence 0→ A
f→ B

g→ C → 0

splits on the left if f is a split mono;
splits on the right if g is a split epi.

Note 1. To remember right vs. left inverse, note that the inverse gives the identity on the middle
term if we’re working with a SES.

Theorem 4 (Splitting Lemma). Fix a sequence 0→ A
f→ B

g→ C → 0, then

it splits on the left ⇐⇒ it splits on the right ⇐⇒ it splits.

Proof. 1 implies 3: f has a left inverse f̃ . Define a mapB → A⊕C by b 7→ (f̃(b), g(b)), then its clearly
a morphism that makes the diagram commute. It’s an iso by the Short Five Lemma.

2 implies 3: g has a right inverse g̃. Define a mapA⊕ C → B by (a, c) 7→ f(a) + g̃(c). Similarly,
this is an iso.

3 implies 1,2: Suppose the iso is φ, then define f̃ = πAφ and g̃ = φ−1iC .



1.4 L I F T S A N D E X T E N S I O N S O F R - M O R P H I S M S

It’s common to want to extend or lift anR-morphism. The following propositions give criteria for when
this is possible.

Proposition 7. SupposeA,B,C are nonempty.

B

C A

f∃! h

g

Suppose f is monic. Then there is a uniqueR-morphism h lifting g if and only if Im g ⊆ Im f . In
this case, h is epic if and only if Im g = Im f .

Proof. The forward direction of the first statement is clear. To go backwards, note that any c, there is a b
such that g(c) = f(b) since Im g ⊆ Im f . Define h by c 7→ b, then f(h(c)) = f(b) = g(c), so h lifts
g. This map is well-defined and unique since f is monic. To show it’s anR-morphism, use the morphism
properties of f and g to show f(h(λc)) = f(λh(c)) and f(h(c1 + c2)) = f(h(c1) + h(c2)), then use
the fact that f is monic.

If h is epic, it’s straightforward to show that Im f ⊆ Im g, which proves their equality. Conversely, fix
b and suppose Im f = Im g. Then f(b) = g(c) = f(h(c)) for some c, which implies b = h(c) since f
is monic.

Lemma 1. Suppose f and g areR-morphisms. If Ker f ⊆ Ker g, then

f(x) = f(y) =⇒ g(x) = g(y).

Proof. If f(x) = f(y), then f(x − y) = 0, so x − y ∈ Ker f ⊆ Ker g. Thus g(x − y) = 0, so
g(x) = g(y).

Proposition 8. SupposeA,B,C are nonempty.

B

A C

∃! h
f

g

Suppose f is epic. Then there is a uniqueR-morphism h extending g if and only if Ker f ⊆ Ker g.
In this case, h is monic if and only if Ker f = Ker g.

Proof. The forward direction of the first statement is clear. To go backwards, since f is epic, any b can be
written b = f(a) for some a. Then define h : b 7→ g(a). This clearly lifts g, and it is well-defined and
unique by the preceding lemma. Showing it’s an R-morphism is a standard check by writing b = f(a)
and using the morphism properties of f and g.

If h is monic, then for a ∈ Ker g, we have h(f(a)) = g(a) = 0. But since f is monic, this implies
f(a) = 0, so a ∈ Ker f . Thus Ker g ⊆ Ker f , and we already know the opposite inclusion. Conversely,
using the b = f(a) fact, h(b1) = b(b2) =⇒ g(a1) = g(a2), so a1 − a2 ∈ Ker g = Ker f , so
b1 = f(a1) = f(a2) = b2.



Proposition 9. The diagram commutes if the row is exact and θg = 0.

A

0 X Y Z

∃! h g

f θ

Proof. f must be monic and Im g ⊆ Im f , so a unique h exists by Proposition 7.

Note that ifX = Ker θ and f is an inclusion map, then the row will always be exact.

Proposition 10. The diagram commutes if the row is exact and gθ = 0.

A

X Y Z 0θ

g

f

∃! h

Proof. f must be epic and Ker f ⊆ Ker g, so a unique h exists by Proposition 8.

Note that ifZ = X/ Im θ and the f is a projection map, then the row will always be exact.



2 C O N S T R U C T I N G M O D U L E S

2.1 Q U O T I E N T M O D U L E S

Hello there.
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2.2 P R O D U C T S A N D C O P R O D U C T S

We can make a direct product ofR-modules
∏

a Mα into anR-module itself by defining

(xα)α + (yα)α
.
= (xα + yα)α,

λ(xα)α
.
= (λxα)α.

If we add the restriction that only a finite number of the coordinates can be nonzero, then we get the
direct sum

⊕
α Mα. In this context, πα denotes the canonical projection onto the α-th coordinate, and

iα denotes the α-th canonical injection

x 7→ (. . . , 0, x, 0, . . . ),

where the single nonzero coordinate is the α-th coordinate.
Instead of worrying about individual elements, we can use the universal properties of the product and

coproduct to characterize direct products and sums.

Note 2. I still use the notationπα and iα in the general categorical setting, but unless I’m specifically
using them with a direct product or direct sum, they’re just ordinary morphisms instead of special
projections or injections.

Definition 9. Fix a category C and objects {Mα}α. A product of {Mα}α is an object P with
morphisms πα : P → Mα such that for any other objectN and morphisms fα : N → Mα, there
is a unique morphism f : N → P lifting each fα.

P

N Mα

πα
f

fα

Dually, a coproduct of {Mα}α is an object C with morphisms iα : Mα → C such that for any
other object object N and morphisms fα : Mα → N , there is a unique morphism f : C → N
extending each fα.

C

N Mα

f

fα

iα

Proposition 11. If (P, {πα}) is a product, then each πα is epic. If (C, {iα}) is a coproduct, then
each iα is monic.

Proof. Fixα, letN = Mα, and let fα be the identity. Then there are unique fP , fC such that παfP = 1
and fCiα = 1, i.e. πα is epic and iα is monic.



Theorem 5 (Uniqueness). If (P, {πα}) is a product, then (Q, {φα}) is too ⇐⇒ there is a unique
isomorphism P ∼= Q such that the first diagram commutes for all α. Dually, if (C, {iα}) is a co-
product, then (D, {jα}) is too ⇐⇒ there is a unique isomorphism C ∼= D such that the second
diagram commutes for all α.

P Q C D

Mα Mα

πα

∼

ϕα

∼

iα
jα

Proof. Weneed only prove the case for products, since the coproduct case is dual. The forward direction is
straightforward. For the backward direction, extendP ’s unique lift gottenwith the unique isomorphism’s
inverse to getQ’s unique lift.

Theorem 6 (Existence). (
∏

α Mα, {πα}) is a product of {Mα}.

Proof. GivenN and morphisms fα : N →Mα, we define f in the obvious way by

x 7→ (fα(x))α.

It’s anR-morphism, it satisfies the universal property, and it clearly must be unique.

Note 3. Thus up to (unique) isomorphism, every family of R-modules has a unique product and
coproduct. We can then call the direct product (direct sum) the product (coproduct).

A consequence of the uniqueness of the product and coproduct is that both
∏

and
⊕

are commu-
tative and associative (no matter what order we do things in, we end up with a product/coproduct, which
must be isomorphic to the product/coproduct we got with the original ordering).

Do proof of associativity for practice.
Finish this section.



2.3 T H E T E N S O R P R O D U C T

Note 4. Big idea: the tensor product is a space in which multilinear maps become linear maps.

Definition 10. SupposeM : (−, R) andN : (R,−). IfG is aZ-module, then f : M ×N → G
is balanced if

1. f(m1 +m2, n) = f(m1, n) + f(m2, n);

2. f(m,n1 + n2) = f(m,n1) + f(m,n2);

3. f(mλ, n) = f(m,λn).

Definition 11. The tensor product of a rightmoduleM and left moduleN is aZ-moduleM⊗N
with a balanced tensor map⊗ such that for allZ-modulesG and balancedmaps f : M ×N → G,
there is a unique Z-morphism extending f through⊗.

M ⊗N

M ×N G

∃! ϕ⊗

f

Note that ifM andN are not both trivial, then⊗ is never injective. Since⊗(mλ, n) = ⊗(m,λn),
set λ = 0 to get⊗(0, n) = ⊗(m, 0) for allm,n.

Proposition 12. 〈Im⊗〉 = M ⊗N .

Thus every element inM ⊗ N can be written

ℓ∑
i=1

ki(m̃i ⊗ ñi) =

ℓ∑
i=1

mi ⊗ ni.

In general, this representation is not unique, so we are not working with a basis.

Lemma 2. If aZ-morphism has an addition-respecting property on a singlem⊗ n, then it has that
property on all ofM ⊗ N .

Proof. You can express any element ofM ⊗ N as
∑

i mi ⊗ ni, and Z-morphisms respect addition.



Theorem 7 (Uniqueness). The tensor product is unique up to (unique) isomorphism:

M⊗̃N is also a tensor product ⇐⇒
M ⊗N M⊗̃N

M ×N

∃! ∼

⊗
⊗̃

LetF be the free module onM ×N , and letH be the subgroup ofF generated by all elements of the
form

i(m1 +m2, n)− i(m1, n)− i(m2, n),

i(m,n1 + n2)− i(m,n1)− i(m,n2),

i(mλ, n)− i(m,λn).

IfM ×N
i→ F

π→ F/H , define

M ⊗R N
.
= F/H,

⊗R
.
= πi.

This gives us the canonical tensor product ofM ×N .

Theorem 8 (Existence). M ⊗R N is a tensor product ofM ×N .

Proof. Recall thatM ⊗R N = F/H and⊗R = πi.

F F/H

M ×N G

π

∃! h ∃! ϕi

f

⇝
M ⊗R N

M ×N G

∃! ϕ⊗R

f

Since F is free, we get h extending f . Then since f is balanced, the definition ofH gives Kerπ = H ⊆
Ker f . Then since π is epic, Proposition 8 gives us φ extending h. Now φ is the only morphism extending
h through π, but it is also the only morphism extending f through πi: if φ̃ also extends f , then φπi =

φ̃πi = f = hi. But h is unique, so φπ = φ̃π, which implies φ = φ̃ since π is epic.

Note 5. Thus up to (unique) isomorphism, there is a unique tensor product ofM ×N . We’ll call
M ⊗R N the tensor product ofM ×N , and we’ll also denotem⊗R n

.
= ⊗R(m,n).

Proposition 13. 1. ⊗ distributes over addition.

2. mλ⊗ n = m⊗ λn.

Proof. ⊗ is balanced by definition.



Corollary 2. 1. 0⊗ n = m⊗ 0 = 0.

2. For all integers k, we have k(m⊗ n) = km⊗ n = m⊗ kn.

Example 2 (Tensoring withQ). LetM be a rightZ-module, thenM ⊗Z Q is essentially a torsion-
free version ofM . Supposem ∈ M is a torsion element, i.e. there is an n ∈ N such that nm = 0,
then for all q ∈ Q,

m⊗ q = m⊗ nq

n
= nm⊗ q

n
= 0⊗ q

n
= 0.

The tensor product preserves module-ness in a manner similar to how dimensions work with matrix
multiplication. The bimodules need to align in the middle, and the bimodules on the outside determine
the bimodules of the tensor product.

Proposition 14.

M : (S,R), N : (R, T ) =⇒ M ⊗R N : (S, T )

with the actions

s

(∑
i

mi ⊗R ni

)
.
=
∑
i

smi ⊗R mi,(∑
i

mi ⊗R ni

)
t
.
=
∑
i

mi ⊗R mit.

Corollary 3. IfR is commutative andM,N areR-modules, thenM ⊗R N is also anR-module.

Note 6. IfM : (−, R) andN : (R,−), thenM ⊗R N is a Z-module since every rightR-module
is also a (Z, R)-bimodule.

Proposition 15. ⊗ is associative:

(M ⊗N)⊗ P ∼= M ⊗ (N ⊗ P ).



2.3.1 M U LT I L I N E A R I T Y T O L I N E A R I T Y

Definition 12. SupposeR is commutative andM1, . . . ,Mn andN areR-modules. We say

φ : M1 × · · · ×Mn → N

is n-multilinear overR if it’s anR-morphism (i.e. R-linear) in each factor.

Since⊗ is associative, the following theorem is unambiguous.

Theorem 9. SupposeR is commutative andM1, . . . ,Mn andN areR-modules. If f : M1×· · ·×
Mn → N is n-multilinear, then it extends uniquely through the tensor product to anR-morphism
(i.e. anR-linear map).

M1 ⊗ · · · ⊗Mn

M1 × · · · ×Mn N

∃! ϕ

f

The map (m1, . . . ,mn) 7→ m1 ⊗ · · · ⊗ mn is also n-multilinear.



3 S P E C I A L M O D U L E S

3.1 C H A I N C O N D I T I O N S A N D T OW E R S

Any modules can be broken down into some ascending or descending sequences of submodules. If we
restrict our attention to only modules with finite such sequences, then we characterize them further.

Definition 13. AnR-moduleM isNoetherian if for all ascending submodule chains

M0 ⊆M1 ⊆M2 ⊆ · · · ,

there is some n ∈ N such thatMn+k = Mn for all k ∈ N, i.e. the chain stabilizes at n. We say that
M isArtinian if for all descending chains

M0 ⊇M1 ⊇M2 ⊇ · · · ,

there is again some n at which the chain stabilizes. We call these two qualities chain conditions.

We can also define similar concepts for unordered sets of submodules.

Definition 14. AnR-moduleM has themaximal (minimal) condition if every nonempty collec-
tion of submodules ofM has some maximal (minimal) submodule w.r.t. set inclusion.

Note that we’re using maximal/minimal, not maximum/minimum. This is important.

Theorem 10. TFAE:

1. M is Noetherian.

2. M satisfies the maximal condition.

3. Every submodule ofM is finitely generated.

Theorem 11. TFAE:

1. M is Artinian.

2. M satisfies the minimal condition.

Is there any similar thing about being finitely generated, or is that just a property of Noetherian
modules?
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A nice property of chain conditions is that they are passed onto submodules and quotient modules.
The converse also holds.

Proposition 16. IfM has some chain condition, then each of its submodules and quotientmodules
has it too. Conversely, if every submoduleN ofM and every quotient moduleM/N has the same
chain condition, then so doesM .

3.1.1 S I M P L E M O D U L E S

A very extreme case of the above conditions is when a module’s only proper submodule is the trivial sub-
module. Thesemodules are called simple. As youmight expect (sinceR-morphisms inducemaps between
submodules), modules going to or coming from a simple module are pretty restricted.

Proposition 17. If f : M → N is a nonzeroR-morphism, then:

1. IfM is simple, then f is monic.

2. IfN is simple, then f is epic.

Proof. Ker f and Im f are submodules ofM and f 6= 0 =⇒ Ker f = 0 and Im f = N .

Corollary 4 (Schur). IfM is simple, then EndR(M) is a division ring.

Proof. Every nonzero endomorphism is necessarily iso. Since the natural multiplication on EndR(M) is
composition, this means every nonzero element has a multiplicative inverse.

3.1.2 S U B M O D U L E T OW E R S

Stuff here.
Extra nice modules will be both Noetherian and Artinian, and its these modules that have a special

“height” characterization based on their submodule towers.



3.2 F R E E M O D U L E S

Note 7. Big idea: free modules are modules with a basis.

Given a nonempty set S and a ring R, we can fill in all the missing linear combinations of S to get a
module 〈S〉. This module is “free” of any unnecessary relations between its elements: it contains every
possible linear combination of terms, with nothing simplified via some other relation.

Definition 15. Fix a category, then a free object on a set S is an object F with a map i : S → F
such that for all other objectsM , every map f : S →M extends uniquely through i to a morphism
F →M .

F

S M

∃! h
i

f

We denote this by (F, i) and say that F is free on S.

Proposition 18. If (F, i) is a free module, then f is injective and 〈Im i〉 = F .

Theorem 12 (Uniqueness). Suppose (F, i) is free on S. Then so is (G, j) ⇐⇒ there is a unique
isomorphism F ∼= Gmaking the following diagram commute.

F G

S

∃! ∼

i
j

Theorem 13 (Existence). For every nonempty set S, there is a freeR-module on S.

Proof. Let F =
⊕

s∈S Rs denote the set of all formal linear combinations of S, which has elements of
the form

∑
s rss, where only finitely many of the rs are nonzero. There’s a natural inclusion i : S ↪→ F .

GivenM and g, define h on i(S) by h(s) = g(s), then extend by linearity to all of F . It’s necessarily a
uniqueR-morphism that satisfies the universal property.

Note 8. Thus up to (unique) isomorphism, every nonempty setS has a unique freeR-module. The
map s→ es gives

⊕
s∈S Rs ∼=

⊕
s∈S R, sowe can use

⊕
s∈S R or

⊕
s∈S Rs as the freeR-module

on S.



Theorem 14. Every module is the quotient of a free module.

Proof. Fix amoduleM with generating setS (it certainly has some generating set since 〈M〉 = M ), and let
F be free onM . The universal property of free modules gives a uniquemorphism φ : F →M extending
the natural inclusion S ↪→M .

F

S M

ϕ

Since 〈S〉 = M , φmust be epic, so the 1st iso theorem givesM ∼= F/Kerφ.

Corollary 5. Every finitely generated module is a quotient of a free module with a finite basis.

3.2.1 B A S E S

Definition 16. A basis of anR-moduleM is a linearly independent subset ofM that generatesM .

Theorem 15. Anonempty subsetS ⊆M is a basis ofM ⇐⇒ each element ofM can be uniquely
expressed as a linear combination of elements of S.

Proposition 19. If (F, i) is a free module, then Im i is a basis of F .

Proof. Suppose (F, i) is free over some nonempty S, then we know F ∼=
⊕

s Rs, and it’s clear that S
is a basis of

⊕
s Rs. We can then translate this basis for

⊕
s Rs into a basis for F since the isomorphism

necessarily commutes with both modules’ inclusion maps by Theorem 12.

Theorem 16. Amodule is free ⇐⇒ it has a basis.

Proof. If F is free, then F ∼=
⊕

s Rs, so its basis is S mapped through the isomorphism. Conversely,
if S is a basis of F , then there is a natural inclusion i : S ↪→ F . Fix another module M and a map
f : S → M , then the only way to get anR-morphism h : F → M is to define h(s) .

= g(s) and then
extend by linearity, which is unique. Thus F is free.

Fill in other notes here.

Theorem 17. The coproduct of free objects is itself free. Explicitly, ifFα is free overSα, then
⨿

α Fα

is free over
⊔

α Sα.



Proof. Suppose we have a family of free objects Fα over Sα. Fix α, and letM and g :
⊔

α Sα → M be
arbitrary.

Fα

⨿
α Fα Fα

Sα

⊔
α Sα

M M

jα

∃! ϕ ∃! f

fα

iα i

g

πα

The diagram’s got a lot going on, but it’s straightforward. All four inclusions and the one projection are
the natural ones, so the square commutes. The map g induces fα by fαπα = g|Sα . Then f comes from
the universal property of free modules, so fiα = fα. Then φ comes from the universal property of the
coproduct, so φjα = f .

To show that
⨿

α Fα is free, we have to show that φ extends g through i. But for any s ∈
⊔

α Sα

coming from Sα,
(φi)(s) = (φjαiαπα)(s) = (fαπα)(s) = g(s),

so φi = g. Thus
⨿

α Fα is free on
⊔

α Sα.

Corollary 6. The direct sum of freeR-modules is itself free.

Proposition 20. The tensor product of freeR-modules is itself free.

Proof. (
⊕

α R)⊗R (
⊕

β R) ∼=
⊕

α,β R⊗R R ∼=
⊕

α,β R.

Finish this section



3.3 H O M S E T S

Given R-modulesM,N , the set Hom(M,N) is an abelian group under function addition, but the left
action (λ, f) 7→ λf doesn’t necessarily make Hom(M,N) into an R-module (λf might not be a mor-
phism). This is only true ifR is commutative.

Note 9. An abelian group iso is the same thing as a Z-iso.

Proposition 21. IfM : (R,S) andN : (R, T ), then HomR(M,N) : (S, T )with actions

sφ : m 7→ φ(ms)

φt : m 7→ φ(m)t.

IfM : (S,R) andN : (T,R), then HomR(M,N) : (T, S)with actions

tφ : m 7→ tφ(m)

φs : m 7→ φ(sm).

Corollary 7. IfR is commutative andM,N are bothR-modules, then so is HomR(M,N).

Theorem 18. The following are Z-isos.

1. Hom (
⊕

α Mα, N) ∼=
∏

α Hom (Mα, N).

2. Hom (N,
∏

α Mα) ∼=
∏

α Hom(N,Mα).

Corollary 8. IfR is commutative, then the aboveZ-isos are alsoR-isos.

Corollary 9. If we’re dealing with a finite setM1, . . . ,Mn, then we haveZ-isos

1. Hom(
⊕n

i=1 Mi, N) ∼=
⊕n

i=1 Hom(Mi, N);

2. Hom(N,
⊕n

i=1 Mi) ∼=
⊕n

i=1 Hom(N,Mi).

3.3.1 H O M F U N C T O R S



Fix a module M , then for any other module A, there are associated abelian groups Hom(A,M) and
Hom(M,A). A morphism f : A→ B also induces maps on the hom sets via pre/post composition.

A B

M

f

f∗ : Hom(M,A)→ Hom(M,B)

g 7→ fg

f∗ : Hom(A,M)← Hom(B,M)

gf ← [ g
Proposition 22. Both induced maps respect addition. Also, (gf)∗ = g∗f∗ and (gf)∗ = f∗g∗.

Note 10. This says that Hom(M,−) is a covariant functor, while Hom(−,M) is contravariant.

Theorem 19. Hom(M,−) and Hom(−,M) are left exact. Explicitly, for all short exact

0 A B C 0,
f g

the following induced sequences are exact.

0 Hom(M,A) Hom(M,B) Hom(M,C)

Hom(A,M) Hom(B,M) Hom(C,M) 0

f∗ g∗

f∗ g∗

Corollary 10. Suppose0→ A
f→ B

g→ C → 0 is split exact, then the following induced sequences
are also split exact.

0 Hom(M,A) Hom(M,B) Hom(M,C) 0

0 Hom(A,M) Hom(B,M) Hom(C,M) 0

f∗ g∗

f∗ g∗

Proof. We only do this for the first induced sequence, as the second one is dual. Since the original SES
splits, g has a right inverse g̃. Then g∗g̃∗ = (gg̃)∗ = (1C)∗, which is the identity on Hom(M,C). Thus
g∗ is epic and the sequence splits. By the previous theorem, the rest of the sequence is exact.

Note 11. In general, though, we can’t guarantee that g∗ or f∗ is surjective. This motivates the defi-
nition of projective and injective modules.



Theorem 20 (Tensor-hom adjunction). The following are Z-isos.

A : (−, R)

B : (R,S)

C : (−, S)
HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C))

A : (R,−)
B : (S,R)

C : (S,−)
HomS(B ⊗R A,C) ∼= HomR(A,HomS(B,C))

Proof. Do this.



3.4 P R O J E C T I V E A N D I N J E C T I V E M O D U L E S

I don’t think I understand intuitively why projective/injective isn’t always true.

Note 12. Big idea: a projective module P makes any short exact 0 → A → B → P → 0 split.
An injective moduleQmakes any short exact 0 → I → B → C → 0 split. They make the hom
functors exact.

Definition 17. The following special types of modules preserve exactness of the given induced se-
quences for any arbitrary short exact 0→ A

f→ B
g→ C → 0.

P is projective
Q is injective

Hom(P,B)
g∗→ Hom(P,C)→ 0

0←Hom(A,Q)
f∗← Hom(B,Q)

Equivalently,
projective
injective

if g is epic, then so is g∗
if f is monic, then f∗ is epic

Equivalently, if g is epic, then so is g∗.

Proposition 23. Effect on the hom functors:

Hom(P,−) is exact ⇐⇒ P is projective
Hom(−, Q) is exact ⇐⇒ Q is injective

Theorem 21 (Characterizations of projective modules). TFAE:

1. P is a projective module.

2. Any morphism P → C can be lifted (not necessarily uniquely) through epis, i.e. whenever
B → C → 0 is exact.

P

B C 0

∃ ϕ

3. Every short exact 0→ A→ B → P → 0 splits.

4. P is a direct summand of a free module, i.e. there is some P̃ such that P ⊕ P̃ is free.

Corollary 11. Free modules are projective.

The converse of this isn’t true in general, so the following is strict:

{all free modules} ⊂ {all projective modules} .



Corollary 12. Every module is the quotient of a projective module.

Proof. Every module is the quotient of a free module, and free modules are projective.

Theorem 22 (Characterizations of injective modules). TFAE:

1. Q is an injective module.

2. AnymorphismB → Q can be extended (not necessarily uniquely) throughmonos, i.e. when-
ever 0→ B → C is exact.

0 B C

Q
∃ ϕ

3. Every short exact 0→ Q→ B → C → 0 splits.

Since there’s nothing really dual to free modules, there’s no real dual notion of the free module char-
acterization of projective modules. That’s why we only have three characterizations for injective modules
above instead of four.

Proposition 24. M ⊕N is projective/injective ⇐⇒ M andN are both projective/injective.

Generalize for arbitrary number of products.

Proposition 25. LetR be commutative. IfM,N are projective, then so isM ⊗R N .

Proof. SinceM,N are projective,Hom(M,−) andHom(N,−) are exact, soHom(M,−)◦Hom(N,−)
is too. But by the tensor-hom adjunction,

Hom(M,−) ◦Hom(N,−) ∼= Hom(M ⊗R N,−),

soM ⊗R N is projective.



3.5 F L AT M O D U L E S

Note 13. Big idea: a flat moduleM makes theM ⊗ − and−⊗M functors exact.

SupposeM : (−, R), then

M ⊗R − : Mod-R→ Ab
N 7→M ⊗R N

f 7→ 1⊗ f

is a covariant functor. IfM : (S,R), then it’s Mod-R→ S-Mod instead.

Theorem 23. M ⊗ − is right exact, i.e. if 0→ A→ B → C → 0 is exact, then so is

M ⊗ A M ⊗ B M ⊗ C 0.

The induced sequence above is exact for all M : (−, R) ⇐⇒ A→ B → C → 0 is exact.

Proposition 26. M ⊗ − preserves split exactness.

Proof. If 0→ A→ B → C → 0 is split exact,M ⊗B ∼= M ⊗ (A⊕C) ∼= (M ⊗A)⊕ (M ⊗C).

Example 3. LetM = Z2, then

Z2 ⊗Z Z ∼= Z2

Z2 ⊗Z Q ∼= 0

(since each element of Z2 is a torsion element). Thus any morphism Z → Q induces the zero map.
In particular, the natural inclusionZ ↪→ Q (monic) induces the zeromap (notmonic). ThusM⊗−
is only right exact.

Definition 18. M is aflatmodule ifM ⊗R− is exact. Equivalently, if f is monic, then so is 1⊗ f .

Proposition 27. Free =⇒ flat.

Proof. Suppose F ∼=
⊕

α R is free, then question about this proof...

Corollary 13. Projective =⇒ flat.



Proof. If P is projective, then P ⊕ P̃ is free for some P̃ . Since this sum is free, it’s flat: if f : A → B is
monic, then so is

(P ⊕ P̃ )⊗ A (P ⊕ P̃ )⊗ B

(P ⊗ A)⊕ (P̃ ⊗ A) (P ⊗ B)⊕ (P̃ ⊗ B)

1⊗f

∼ ∼

Thus 1⊗ f : P ⊗ A→ P ⊗ B is monic.

Note 14.
Free =⇒ Projective =⇒ Flat.

Everything here also applies to −⊗M .



3.6 V E C T O R S PA C E S

Proposition 28. Every SES of vector spaces splits.

Proof. Every vector space has a basis, so it’s free, so it’s projective.

Corollary 14. IfW is a subspace of a vector space V , then V ∼= W ⊕ V /W .

Proof. The sequence 0→W
i→ V

π→ V /W → 0 is exact, so it splits, so V ∼= W ⊕ V /W .

Corollary 15. IfW is a subspace of V , then dimV = dimW + dim(V /W ).

Corollary 16. IfW is a subspace of finite-dimensional vector space V , then
dimV = dimW ⇐⇒ V = W .

Proof. If dimV = dimW , then by Corollary 15, dim(V /W ) = 0. Thus V /W = 0, so V = W . The
other direction is clear.

This isn’t true for free modules in general. For example, if n 6= 0, 1, then nZ is a strict submodule of
Z, yet both have dimension 1 since they each have a 1-element basis.

Theorem 24 (Rank-Nullity). If φ : V →W is a linear map, then

dimV = dim(Imφ) + dim(Kerφ).

Proof. Kerφ is a subspace of V , so V ∼= Ker f ⊕ V /Ker f ∼= Ker f ⊕ Im f (by 1st iso theorem).

Corollary 17. If V,W are finite-dimensional vector spaces of equal dimension, and if φ : V →W
is linear, then TFAE:

1. φ is injective;

2. φ is surjective;

3. φ is bijective.

Proof. By rank-nullity, f is injective ⇐⇒ Kerφ = 0 ⇐⇒ dim(Kerφ) = 0 ⇐⇒ dimV =
dim(Imφ) ⇐⇒ V = Imφ ⇐⇒ φ is surjective.
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