C O N T E N T S

-	Basics	2
	1.1 Continuity	3
2	Brownian Motion	4
3	Integration	6
	3.1 Integration of Simple Processes	
	3.2 Extending the Itô Integral	7
	3.3 Itô Processes	8
	3.4 Itô's Formula	9

1 BASICS

variation, quadratic variation filtration

1.1 CONTINUITY

Definition 1. A function $f: I \to \mathbb{R}$ is γ -Hölder continuous if there is a $C < \infty$ such that

$$|f(t) - f(s)| \le C |t - s|^{\gamma}$$

for all $s, t \in I$. Functions with $\gamma = 1$ are **Lipschitz continuous**.

Theorem 1 (Kolmogorov Continuity Theorem). Let $\{X_t\}$ be a stochastic process on [0, 1]. If there are $\alpha, \beta, C > 0$ such that

$$\mathbb{E}\left(|X_t - X_s|^{\alpha}\right) \le C|t - s|^{1+\beta},$$

then there is a version \tilde{X}_t of X_t with sample paths that are almost surely γ -Hölder continuous for $\gamma \in (0, \beta/\alpha)$.

version means $\mathbb{P}\left(\tilde{X}_t = X_t\right) = 1$ for all t.

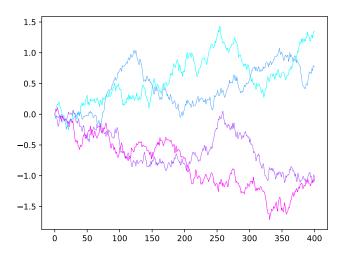
2 BROWNIAN MOTION

Definition 2. A standard **Brownian motion** $B(t, \omega)$ is a continuous time \mathbb{R} -valued stochastic process over some $(\Omega, \mathcal{F}, \mathbb{P})$ such that

- 1. $B_t B_s \sim \mathcal{N}(0, t s);$
- 2. Disjoint increments are independent;
- 3. The sample path $t \mapsto B_t(\omega)$ is continuous with probability 1.

At all times, a Brownian motion receives an infinitesimal Gaussian kick. The intuition here is that "dB" is then a Gaussian random variable. Of course, dB is meaningless right now since B is nowhere differentiable with probability 1, but we will give it meaning later in terms of Itô integrals, and the interpretation will be the same.

A useful fact for proving that disjoint intervals are independent: two Gaussians are independent \iff they have 0 covariance.



Proposition 1. If B_t is a Brownian motion, then so are the following two processes:

• $X_t := \frac{1}{\sqrt{\alpha}} B_{\alpha t}$ for fixed $\alpha > 0$;

Proposition 2. If B_t is a Brownian motion, then $Cov(B_t, B_s) = min(t, s)$.

Construct a BM using Wiener measure and $B_t(\omega) = \omega_t$. Is the following the finite dimensional distribution stuff? Let $A := \{\omega \mid B_{t_k}(\omega) \in (a_k, b_k) \text{ for } k = 1, \ldots, N\}$. If

$$\phi(s,y) := \frac{\exp\left(-y^2/(2s)\right)}{\sqrt{2\pi s^2}},$$

then the probability of A is

$$\mathbb{P}(A) = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} \phi(t_1, x_1) \prod_{i=2}^N \phi(t_i - t_{i-1}, x_i - x_{i-1}) \, dx_1 \, \cdots \, dx_n.$$

The idea here is that $\phi(t_i - t_{i-1}, x_i - x_{i-1})$ is the conditional density for B_{t_k} given $B_{t_{k-1}} = x_{k-1}$.

Proposition 3. The sample paths of Brownian motion are almost surely γ -Hölder continuous for $\gamma \in (0, 1/2)$.

Proposition 4. If B is a Brownian motion on [0, T], then with probability 1,

• $V^{p}(B, [0, T]) < \infty$ for p > 2;

•
$$V^p(B, [0, T]) = \infty$$
 for $p < 2$.

The quadratic variation of B is [B, B](t) = t.

3 INTEGRATION

3.1 INTEGRATION OF SIMPLE PROCESSES

Suppose B_t is a Brownian motion adapted to $\{\mathcal{F}_t\}$. Then $\mathcal{L}^2_A([0,T] \times \Omega)$ is the space of all processes $X(t,\omega)$ adapted to $\{\mathcal{F}_t\}$ such that

$$\mathbb{E}\left(\int_0^T X^2 \ ds\right) < \infty.$$

This space is Banach space (complete normed vector space) with norm

$$\|X\|_{\mathcal{L}^2_A} = \sqrt{\mathbb{E}\left(\int_0^T X^2 \, ds\right)}$$

The subspace $\mathcal{L}^2_{A,0} \subset \mathcal{L}^2_A$ of *simple* adapted processes is dense in \mathcal{L}^2_A : for any $X \in \mathcal{L}^2_A$, there is a sequence $\{X_n\} \subset \mathcal{L}^2_{A,0}$ converging to X in the \mathcal{L}^2 sense, i.e.

$$\lim_{n \to \infty} \|X_n - X\|_{\mathcal{L}^2_A} = \lim_{n \to \infty} \sqrt{\mathbb{E}\left(\int_0^T (X_n - X)^2 \, ds\right)} = 0.$$

We'll define the Itô integral for simple adapted processes, then extend it to general adapted processes in the next section.

finish

Proposition 5. Let $\sigma \in \mathcal{L}^2_A$, then the quadratic variation of $X(t) = \int_0^t \sigma \ dB$ is

$$[X,X](t) = \int_0^t \sigma^2 \, ds.$$

Note that if σ depends on ω , then [X, X](t) is still a random variable.

3.2 EXTENDING THE ITÔ INTEGRAL

For $X \in \mathcal{L}^2_A$, we know there's a sequence $\{X_n\}$ converging to X in the \mathcal{L}^2 sense. Then by the Itô isometry, the sequence $\{I_n\}$ given by

$$I_n := \int_0^T X_n \ dB$$

is a Cauchy sequence. Thus there is a random variable $I \in L^2$ such that $I_n \to I$ in the L^2 sense, i.e.

$$\lim_{n \to \infty} \|I_n - I\|_{L^2} = \lim_{n \to \infty} \mathbb{E} \left(|I_n - I|^2 \right) = 0.$$

Definition 3. For $X \in \mathcal{L}^2_A$,

$$\int_0^T X \ dB$$

is the unique limit of the sequence given by $I_n := \int_0^T X_n \ dB$, where $X_n \to X$.

This integral has all the same properties as the one for simple processes. Further extension where martingale property becomes *local* martingal property.

3.3 ITÔ PROCESSES

do this.

3.4 ITÔ'S FORMULA

Theorem 2. Let Z be an Itô process satisfying

$$dZ = \mu \ dt + \sigma \ dB.$$

Let $f(t,x) \in C^2$, then

$$df(t, Z_t) = \left[\frac{\partial f}{\partial x}\right] dZ + \left[\frac{\partial f}{\partial t} + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}\sigma^2\right] dt,$$

where all partial derivatives are evaluated at (t, Z_t) .