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1 T O P O L O G I C A L S PA C E S

1.1 T O P O L O G I C A L S PA C E S

Definition 1. LetX be a set, then a topology onX is a collection T of subsets ofX such that

1. ∅, X ∈ T ,

2.
⋃

α∈J Uα ∈ T , and

3.
⋂N

i=1 Ui ∈ T .

Elements of a topology are called open sets.

Example 1. 1. “Indiscrete” topology: Ti = {∅, X}

2. “Discrete” topology: Td = {all subsets ofX}

Definition 2. Let T , T ′ be topologies on a setX , then T is finer than T ′ if T ′ ⊂ T . T is coarser
than T ′ if T ⊂ T ′. The notions of strictly finer and strictly coarser follow.

From this we see that “fine” is a notion of a large topology, and “coarse” is a notion of a small topology.

Example 2. The lower limit topology onR is given by the basis

B = {[a, b) | a < b} .

It is strictly finer than the standard topology onR: since
⋃

n∈N[a+1/n, b) = (a, b), it contains the
standard topology, but [a, b) is not open in the standard topology, so it is strictly finer.

Example 3. LetX be any set, then the finite complement topology is defined

Tf = {U ⊂ X | X − U is finite} ∪ {∅} ,

Checking that this is a topology boils down to just using DeMorgan’s Laws.

2



1.2 C L O S E D S E T S A N D L I M I T P O I N T S

Definition 3. A setA ⊂ (X, T ) is closed ifX −A is open inX .

Theorem 1. Let (X, T ) be a topological space, and let F denote a closed set ofX , then

1. ∅ andX are closed,

2.
⋂

α∈J Fα is closed, and

3.
⋃N

i=1 Fi is closed.

Proof. This is a straightforward application of DeMorgan’s Laws.

Properties of a closed setA in a subspace Y ofX :

• A is the intersection of Y and a closed set inX .

• If Y is closed inX , thenA is closed inX .

Proposition 1. Let Y be a subspace of X . Then A is closed in Y if and only if it is equal to the
intersection of a closed set ofX with Y .

Proposition 2. Let Y be a subspace ofX . IfA is closed in Y and Y is closed inX , thenA is closed
inX .

Definition 4. The interior of a setA, denotedAo, is the union of all open sets contained inA.
The closure of a setA, denotedA is the intersection of all closed sets containingA.

The closure of a set is clearly closed, and the interior of a set is clearly open. It is also clear that ifA is
open, thenAo = A, and ifA is closed, thenA = A. We also have the obvious relationAo ⊂ A ⊂ A.

We have to be careful when describing closures. Given a subspace Y of X , the closure of A in X is
generally not the same as the closure ofA in Y . In this case, we useA to denote the closure ofA inX (the
overall space). We relate this to the closure ofA in Y (the subspace) with the following proposition.

Proposition 3. Let Y be a subspace ofX , and letA ⊂ Y . ThenAY = AX ∩ Y .

Definition 5. A neighborhood of a pointX is an open set containing x.



Theorem 2. LetA be a subset of a topological spaceX , then

1. x ∈ A if and only if every neighborhood of x intersectsA, and

2. Supposing the topology ofX is given by a basis, then x ∈ A if and only if every basis element
B containing x intersectsA.

Make sure you have an intuitive understanding of why this is true.

Definition 6. LetA ⊂ (X, T ), then x ∈ X is a limit point ofA if every open neighborhood of
x intersectsA at some point other than x.

Equivalently, x belongs to the closure ofA − {x}. Note that x need not lie inA. Think about
this.

Theorem 3. LetA ⊂ (X, T ), and denote the set of limit points ofA byA′. ThenA = A ∪A′.

Corollary 1. A subset of a topological space is closed if and only if it contains all its limit points.

Proof. LetA ⊂ (X, T ). ThenA is closed if and only ifA = A = A ∪A′, andA = A ∪A′ if and only
ifA′ ⊂ A.



1.3 B A S E S

Definition 7. Let T be a topoloy onX , and let B ⊂ T . Then B is a basis for T if every open set
of T can be written as the union of elements of B.

Proposition 4. Let T be a topology onX , and let B be a collection of subsets ofX . Then B is a
basis for T if and only if

1. B ⊂ T ; and

2. for eachU ∈ T and p ∈ U , there is aB ∈ B such that p ∈ B ⊂ U .

Proof. The forward direction follows from every open set of T being the union of elements of B. For the
backward direction, since p ∈ Bp ⊂ U for all p ∈ U , we have U =

⋃
p∈U Bp, so every open set of T is

the union of elements of B.

Figure 1.1: For anyU ∈ T , each x ∈ U lies in someBx ∈ B forBx ⊂ U .

Not every set of subsets ofX will generate a topology, so we need conditions for a collectionB to be a
basis for any topology.

Proposition 5. Let B be a collection of subsets ofX . Then B generates a topology if and only if

1.
⋃

B∈B = X .

2. givenB1, B2 ∈ B and x ∈ B1 ∩B2, there is aB3 ∈ B such that x ∈ B3 ⊂ B1 ∩B2.

Proof. Forward: (1)X must be open, soX is the union of the elements of B. (2) Since B1 and B2 are
both open in the topology generated by B, their intersection is, as well. Then since B is a basis for this
topology, we can find a satisfactoryB3.

Backward: The topology generated by a set B is the collection of all unions of elements of B. It is
clear that ∅ is in it, and condition (1) implies thatX is, as well. Arbitrary unions are in the topology by
definition. Induction on condition (2) shows that the topology also contains finite intersections.



Figure 1.2: Condition (2) in Proposition 5.

Note 1. Since B exists independently from any topology, it doesn’t make sense to describe its mem-
bers as “open” until after we’ve generated a topology from it. Once we’ve done so, though, it should
be clear that every basis element is open in the generated topology.

We can also get a notion of how relatively fine or coarse a topology is by using its basis.

Proposition 6. LetB,B′ be bases for the topologiesT , T ′ onX , respectively. ThenT ′ is finer than
T if and only if for allB ∈ B and x ∈ B, there is aB′ ∈ B′ such that x ∈ B′ ⊂ B.

Proof. First we show the backward implication. LetU ∈ T , and let x ∈ U . Since B generates T , there is
aB ⊂ B such that x ∈ B ⊂ U . By assumption, there is then aB′ ∈ B′ such that x ∈ B′ ⊂ B ⊂ U .
ThusU ∈ T ′, so T ′ is finer than T .

Now we show the forward implication. Let B ∈ B, and let x ∈ B, then B ∈ T . By assmption,
T ⊂ T ′, soB ∈ T ′ as well. Then by the definition of a generated topology, there is aB′ ⊂ B′ such that
x ∈ B′ ⊂ B.

Proposition 7. The topology generated by a basis is the smallest topology containing that basis.



1.4 S U B B A S E S

Definition 8. A subbasis S for a topology T on X is a collection of subsets of X whose finite
intersections form a basis for T .

Subbases are easier to construct than bases, but the construction of a topology from a subbasis involves
an extra step, namely the finite intersections. What we are doing is creating a basis B from S by taking
finite intersections of the subbasis elements. Then we are takingB and constructing T by taking arbitrary
unions, as is usual.

Figure 1.3: The process for constructing a topology using a subbasis S .

Proposition 8. Let T be a topology onX , and let S be a collection of subsets ofX . Then S is a
subbasis for T if and only if

1. S ⊂ T ; and

2. for each U ∈ T and p ∈ U , there is a finite intersection
⋂n

i=1 Si of elements of S such that
p ∈

⋂n
i=1 Si ⊂ U .

Proof. This follows from Proposition 4 (the analogue of this proposition for bases). When proving both
directions, there’s just an extra step to go from a genric basis element to a finite intersection of elements of
S .

Proposition 9. Let S be a collection of subsets ofX . Then S generates a topology if and only if S
coversX .

Proposition 10. The topology generated by a subbasis is the smallest topology containing that sub-
basis.



1.5 C O N T I N U O U S F U N C T I O N S

The category Top has topological spaces as objects and continuous functions as morphisms.

Definition 9. LetX,Y be topological spaces, then f : X → Y is continuous if for all U open in
Y , f−1(U) is open inX .

Proposition 11. If Y has basis B and f−1(B) is open in X for all B ∈ B, then f : X → Y is
continuous. Similarly, if Y has subbasisS and f−1(S) is open inX for allS ∈ S , then f : X → Y
is continuous.

Proof. The preimage of any open set if the union of preimages of basis elements. The preimage of any basis
element is the finite intersection of preimages of subbasis elements.

Theorem 4. Let X and Y be topological spaces, and let f : X → Y , then the following are
equivalent:

1. f is continuous.

2. For allA ⊂ X , f(A) ⊂ f(A).

3. For allB closed in Y , f−1(B) ⊂ f−1(B).

4. For allB closed in Y , f−1(B) is closed inX .

5. For all x ∈ X and for each neighborhood V of f(x), there is a neighborhood U of x such
that f(U) ⊂ V .

Example 4. IfX has the discrete topology, then any function out ofX is continuous. IfX has the
indiscrete topology, then any function intoX is continuous.

Definition 10. A homeomorphism is a continuous function with continuous inverse (an isomor-
phism in Top).

Equivalently, a homeomorphism is a bijective function f : X ↔ Y such that U is open inX if
and only if f(U) is open in Y .



Figure 1.4: A homeomorphism f .

Theorem 5 (The Pasting Lemma). LetX = A∪B, whereA andB are either both closed or both
open inX . Let f : A → Y and g : B → Y be continuous. If f(x) = g(x) for all x ∈ A ∩ B,
then the function h : X → Y given by

H(x) =

{
f(x) x ∈ A

g(x) x ∈ B

is continuous.

Proof. SupposeA andB are both closed. LetC be closed inY , thenh−1(C) = f−1(C)∪g−1(C). Since
f and g are continuous, both f−1(C) and g−1(C) are closed inA andB, respectively. Since bothA and
B are closed inX , both preimages are also closed inX . Thush−1(C) is closed inX andh is subsequently
continuous.

To show this when A and B are both open, replace the word “closed” with the word “open” in the
above paragraph.

Note that the condition f(x) = g(x) for allx ∈ A∩B is not needed in this proof. It is only necessary
to make h an actual function.

Note 2. If f : A×B → X instead, there is no useful criterion for the continuity of f .

The following maps are easily checked to be continuous:

• Constant maps.

• Inclusion maps.

• Restrictions of continuous maps.

• Compositions of continuous maps.



2 S P E C I A L T O P O L O G I E S

2.1 T H E S U B S PA C E T O P O L O G Y

There is a natural way of a subset inheriting the topology of the set it lies in. The following definition is
easily checked to actually be a topology.

Definition 11. Let (X, T ) be a topological space. If Y ⊂ X , then

TY = {Y ∩ U | U ∈ T }

is the subspace topology on Y . With this topology, Y is called a subspace ofX .

Proposition 12. Let B be a basis for the topology ofX , then

BY
.
= {B ∩ Y | B ∈ B}

is a basis for the subspace topology on Y .

Proof. Let y ∈ U∩Y , whereU is open inX . There existsB ∈ B such that y ∈ B ⊂ U , so y ∈ B∩Y ⊂
U ∩ Y .

Proposition 13. Let Y be a subspace ofX , and let U be open in Y and Y be open inX . Then U
is open inX .

Proof. U is open in Y , soU = Y ∩ V for some V open inX . Both sets Y and V are open inX , so their
intersectionU must be as well.
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2.2 T H E I N I T I A L T O P O L O G Y

Definition 12. LetX be a set and {Yi}i∈J a collection of topological spaces, and suppose we have
functions fi : X → Yi. The initial topology onX for these fi is the coarsest topology onX such
that each fi is continuous.

Proposition 14. The initial topology onX is generated by the subbasis

S =
{
f−1
i (U) | i ∈ J ;U open in Yi

}
.

Think about this...
This is a nice generalization of the subspace and product topologies. In the next section, we’ll derive

the product topology as the initial topology on a Cartesian product that makes the canonical projections
continuous. The initial topology on a subset such that the inclusion function is continuous is actually the
subsapce topology.

Example 5. SupposeY ⊂ X , and consider the inclusion function ι : S ↪→ X . The initial topology
is generated by {

i−1(U) | U open inX
}
= {Y ∩ U | U open inX} ,

but this is just the subspace topology.
Why bother with saying “generated” if it’s equal? Are there counterexamples?



2.3 T H E P R O D U C T T O P O L O G Y

It would be natural to define the product topology as

P = {U × V | U open inX,V open in Y } ,

but this isn’t enough to give a topology since you can construct examples where the union of elements in
this set don’t lie in the set.

This set is, however, perfectly valid as a basis, since
⋃

U,V (U ×V ) = X ×Y and (U1 ×V1)∩ (U2 ×
V2) = (U1 ∩ U2)× (V1 ∩ V2) ∈ P .

Definition 13. The topology generated byP is the product topology onX × Y .

Proposition 15. If BX is a basis for X and BY is a basis for Y , then BX × BY is a basis for the
product topology.

Proposition 16. The product and subspace topologies “commute”.

Proof. It’s straightforward to show that the product of two subspaces and the subspace of a product both
have the same basis.

Where to put the above stuff?

Definition 14. TheCartesian product of {Xα}α∈A is the set

∏
α∈A

Xα =

{
f : A →

⋃
α∈A

Xα

∣∣∣ f(α) ∈ Xα

}
.

Each function f represents a single “point” in the product.

Example 6. SupposeA = {1, . . . , n} andXα = R for allα. Then each f in theCartesian product
is a function

f : {1, . . . , n} → R.

Since there are only a finite number ofXα’s, we can write each f as a tuple

(f(1), f(2), . . . , f(n)).

Thus there is a clear bijection between
∏n

α=1 Xα andRn.

Extending the product topology to the case of a general Cartesian product is tricky. Given
∏

α Xα,
we could naively say that the topology on it should be given by a basis

B =

{∏
α

Bα

∣∣∣ Bα ∈ Bα

}
,



where Bα is a basis for justXα. If we have a finite number of α’s, this basis is just every possible ordered
combination of basis elements from eachXα:

(B11, B21, . . . , Bn1),

(B11, B22, . . . , Bn2),

...
(B11, B22, . . . , Bnn),

...

The topology generated by this basis is the box topology, and although simple, ends up not being the
best notion of a topology on infinite products because it’s actually too fine. This ends up making some
“obviously” continuous functions discontinuous.

Example 7. Define
R∞ =

∏
i∈Z+

R,

then the function

f : R → R∞

x 7→ (x, x, . . . )

seems like it should be continuous; however, if R∞ has the box topology, then the preimage under
f of the open set U =

∏
i∈Z+(−1/i, 1/i) is f−1(U) = {0}. This isn’t open inR, so f is discon-

tinuous.

We want the product topology to, in a sense, be continuous in each of its components. Unlike the box
topology, though, we don’t want it to be too fine. The way we formalize this is by saying that we want to
find the coarsest topology on

∏
Xα such that the canonical projections

πβ :
∏
α∈A

Xα → Xβ

(f : A →
⋃

Xα) 7→ f(β)

are continuous. This is just the initial topology on
∏

Xα with respect to the projections.

Definition 15. The product topology is generated by the subbasis{
π−1
α (Uα) | Uα open inXα

}
.

The basis for the product topology is then of the form
∏

Uα, where only finitely many of the Uα satisfy
Uα 6= Xα. Compare this to the basis for the box topology, where arbitrarilymany of theUα can be distinct
fromXα.

Proposition 17. The function f : Y →
∏

Xα is continuous if and only if fα is continuous for all
α.



Proof. If f is continuous, then fα = πα ◦ f is the composition of continuous functions and so is itself
continuous. Conversely, for any subbasis element π−1

α (Uα) forUα open inXα, we have

f−1(π−1
α (Uα)) = (πα ◦ f)−1(Uα) = f−1

α (Uα),

which is open since fα is continuous.



3 S P E C I A L S PA C E S

3.1 H A U S D O R F F S PA C E S

We say that a sequence {xn} is eventually inU if there is someN such that xn ∈ U when n ≥ N .

Definition 16. {xn} converges to x if it’s eventually in every open neighborhood of x.

Proposition 18. xn → x if andonly if{xn} is eventually in every basis/subbasis element containing
x.

Example 8. In the discrete topology, xn → x if {xn} eventually equals x.
In the indiscrete topology, every sequence converges to every point.

If we want limits to be unique, we have to enforce certain conditions on our spaces.

Definition 17. A space is T1 if every pair of distinct points have neighborhoods not containing the
other point. The space isHausdorff if these neighborhoods are disjoint.

Proposition 19. A space is T1 if and only if all single points are closed.

Proof. Forward: SupposeX is T1, then fix x ∈ X . Then for y ∈ X − {x}, there is an open Uy such
that y ∈ Uy ⊂ X − {x}, soX − {x} =

⋃
y Uy . ThenX − {x} is open so {x} is closed.

Backward: Suppose all single points inX are closed. Fix x, y ∈ X , thenX − {x} andX − {y} are
the open sets we need to show thatX is T1.

Corollary 2. A space is T1 if and only if all finite point sets are closed.

Proof. Do I even need one? Kinda obvious.

Proposition 20. Every finite set in a Hausdorff space is closed.

Proof. Hausdorff spaces are T1.

15



Proposition 21. Sequences converge to unique points in Hausdorff spaces.

Proof. Suppose {xn} ⊂ X such that xn → x ∈ X . If y 6= x, then sinceX is Hausdorff we can find
disjoint open neighborhoodsU and V of x and y, respectively. The setU contains all but finitely many of
the points in {xn}, so V can only contain finitely many of the points in {xn}. Thus xn cannot converge
to y.

Proposition 22. The product of two Hausdorff spaces is a Hausdorff space.

Proof. Do this.

Proposition 23. A subspace of a Hausdorff space is Hausdorff.

Proof. SupposeX is Hausdorff and that Y is a subspace ofX with distinct points u and v. Then u and v
are also distinct points ofX , so by the regularity ofX , they are separated by disjoint open setsU and V in
X . Then Y ∩ U and Y ∩ V are the desired open sets of Y .



3.2 Q U O T I E N T S PA C E S

Definition 18. Suppose X has a partition P . The quotient space X∗ is P equipped with the
quotient topology:

U is open inX∗ ⇐⇒ π−1(U) is open inX,

where π is the canonical projection

π : X → X∗

x 7→ [x]

induced by the partitionP .

Note that π is necessarily surjective and continuous.

Note 3. The quotient topology is the finest topology such thatπ is continuous. It is thefinal topol-
ogywith respect to π. Section about final topology?

We can equivalently define quotient spaces in terms of images of certain functions.

Definition 19. A quotient map is a surjective continuous map p : X → Y such that

U is open in Y ⇐⇒ p−1(U) is open inX.

Sincep is surjective, we canuse it to define a partition ofX : P =
{
p−1(y) | y ∈ Y

}
.Aquotientmap

is a homeomorphism that isn’t necessarily one-to-one. Thus if we partitionX based on this equivalence
relation induced by p, we get injectivity and p then induces a homeomorphism betweenX∗ andY (see the
next theorem). This also gives us a canonical projection πp : X → X∗.

Quotient map is not necessarily open or closed map. This is subtle.

Proposition 24. Suppose p : X → Y is a quotient map and Z is any space. Then f : Y → Z is
continuous if and only if f ◦ p : X → Z is continuous.

X Y Z
p

f◦p

f

Theorem 6. Suppose p : X → Y is a quotient map andX∗ is the quotient space induced by p.
ThenX∗ ∼= Y .

X

X∗ Y

pπp

∼



Note 4. Given a surjective map p, the quotient topology is the final topology with respect to p.

Definition 20. A map f : X → Y is open if it maps open sets to open sets, and it’s closed if it
maps closed sets to closed sets.

Proposition 25. Suppose f : X → Y is surjective and continuous. If it’s open or closed, then it’s
a quotient map.

Corollary 3. If f : X → Y is continuous and surjective,X is compact, and Y is Hausdorff, then
f is a quotient map.

Proof. SupposeA is closed inX , then sinceX is compact, so isA. Sincef is continuous, f(A) is a compact
subset ofHausdorffY , so it is closed. Thus f is a closed continuous surjection, so it’s a quotientmap.

If X = A ∪ B, then we can make the union disjoint in a sense by introducing more dimensions.
Define

A tB
.
= (A× {0}) ∪ (B × {1})

(which is a subset ofX × {0, 1}) with canonical projection

j : A tB → X

(x, i) 7→ x.

Theorem 7 (Gluing Maps). SupposeX = A ∪ B and f : A → Z , g : B → Z agree onA ∩ B.
If the canonical projection j : A tB → X is a quotient map, then the obvious concatenation of f
and g is continuous.

The pasting lemma is a corollary of this theorem. Go over this, I guess.



3.3 M E T R I C S PA C E S

Definition 21. Themetric topology Td onX induced by d is generated by the basis

Bd
.
= {Bd(x, ε) | x ∈ X, ε > 0} .

Proposition 26. The following give the same topologies onRn:

1. d2(x, y) = ‖x− y‖2,

2. d1(x, y) =
∑

i |xi − yi|,

3. d∞(x, y) = maxi |xi − yi|, and

4. the product topology.

We say a topological space ismetrizable if there is some metric that induces its topology.

Proposition 27. Metrizable spaces are Hausdorff.

Proof. Do this. Should rely on metric space being Haus.

A metric spaceX is bounded if there is an x ∈ X andR > 0 such thatB(x,R) contains all ofX .
Equivalently, we can say that there is someR′ such that d(a, b) < R for all a, b ∈ X .

Proposition 28. Suppose d, d′ are metrics onX . Then Td ⊂ Td′ if and only if for all x ∈ X and
all ε > 0, there is some δ > 0 such thatBd′(x, δ) ⊂ Bd(x, ε).

Proposition 29. Given a metric space (X, d), define

B′
d
.
= {B(d, ε) | x ∈ X, 0 < ε < 1} ,

then 〈B′
d〉 = 〈Bd〉 = Td.

Proposition 30. Define the bounded metric onX by

d(x, y)
.
= min {d(x, y), 1} ,

then Td = Td.

Proof. When ε < 1,

Bd(x, ε) = {y ∈ X | d(x, y) < ε} = {y ∈ X | min {d(x, y), 1)} < ε} = Bd(x, ε).

The result then follows from Proposition 29.



4 T O P O L O G I C A L P R O P E RT I E S

4.1 S E PA R A B I L I T Y

Definition 22. A topological space is separable if it has a countable dense subset.

Example 9. R is separable becauseQ = R.
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4.2 C O N N E C T E D N E S S

Definition 23. A space is connected if it’s not the union of 2 nonempty disjoint open subsets.

Since the whole space is the disjoint union of the 2 sets, the sets are also both closed. Thus we can
separate a space with 2 nonempty disjoint closed sets, too.

Theorem 8. The following are equivalent:

1. X is connected.

2. A ⊂ X is both open and closed ⇐⇒ A = X orX = ∅.

3. WheneverX = AtB withA,B nonempty and disjoint, one ofA,B contains a limit point
of the other.

Proposition 31. Y ⊂ X is disconnected if and only if there are disjoint nonemptyA,B such that
A tB = Y and neitherA norB contains a limit point of the other.

Proposition 32. Suppose U, V are disjoint and open inX . If Y is connected and Y ⊂ U ∪ V ,
then Y lies entirely in one or the other.

Proof. If not,U and V separate Y , contradicting its connectedness.

Theorem 9. A subset ofR is connected if and only if it’s an interval.

Proposition 33. The continuous images of connected spaces are connected.

Corollary 4. IfX ∼= Y , thenX is connected if and only if Y is.

Theorem 10 (IntermediateValueTheorem). Iff : [a, b] → R is continuous andf(a) ≤ c ≤ f(b),
then there is some x ∈ [a, b] such that f(x) = c.

Lemma 1. If {Aα} is a collection of connected subspaces ofX that all intersect, then their union⋃
α Aα is connected.



Proposition 34. IfX and Y are connected, thenX × Y is connected.

Proposition 35. IfA is connected andA ⊂ B ⊂ A, thenB is also connected.

Definition 24. Define an equivalence relation by saying x ∼ y if there is a connected component
A containing x and y. Then the equivalence classes of ∼ are the (connected) components of the
space.

Example 10. In the discrete topology and in Q with the subspace topology inherited from R, the
components are single points.

Theorem 11. The components of X are closed, disjoint, connected, and union to X . Every con-
nected subset is a subset of a component.



4.3 PAT H C O N N E C T E D N E S S

Definition 25. A path in X from x to Y is a continuous function γ : [0, 1] → X such that
γ(0) = x and γ(1) = y. We sayX is path connected if we can find paths between all points inX .

Proposition 36. The continuous images of path connected spaces are path connected.

Proposition 37. Path connected spaces are connected.

Proof. If a path connected space is disconnected, then you can show that [0, 1] is also disconnected. But
we know [0, 1] is connected, so this is a contradiction.

Example 11 (The Topologist’s Sine Curve). The converse of the previous proposition is false in
general. Let

T = {(x, sin(1/x) | x > 0} ∪ {(0, 0)} ,

then T is connected but not path connected.



4.4 C O M PA C T N E S S

Definition 26. A topological space is compact if every open cover has a finite subcover.

A finite union of compact spaces is compact since the finite union of finite subcovers is still finite.

Proposition 38. Continuous images of compact spaces are compact.

Proposition 39. 1. Compact subsets of Hausdorff spaces are closed.

2. Closed subsets of compact spaces are compact.

Theorem 12 (ExtremeValueTheorem). IfX is compact andf : X → R, thenf attains its infimum
and supremum onX .

Corollary 5. If f : X → Y is a continuous bijection,X is compact, and Y is Hausdorff, then f is
a homeomorphism.

Add quotient map version here?

Proof. LetA be closed inX , then sinceX is compact,Amust also be compact. Then f(X) is a compact
subset of Hausdorff Y , so it is closed. Thus f is a closed map, so its inverse is also continuous.

Lemma 2 (Tube Lemma). Suppose Y is compact and x0 ∈ X . IfN is a neighborhood of x0 × Y ,
then there is some neighborhoodU of x0 such thatU × Y ⊂ N .

Theorem 13 (Tychonoff). Arbitrary products of compact spaces are compact.

Theorem 14 (Heine-Borel). K ⊂ Rn (with the standard topology) is compact if and only if it’s
closed and bounded.

Proof. Forward: SinceRn is Hausdorff andK is compact,K is also closed. Additionally, the set of open
balls {B(0, r)}r>0 coversK , so we can find a finite subcover. Because of the nested structure, that means
there’s a singleB(0, r) containingK , i.e. K is bounded.

Backward: SinceK is bounded,K ⊂ B(0, r) for some r. ThenK ⊂ [−r, r]n, which we know to
be compact. SinceK is the subset of a compact set and it’s closed by assumption,Kmust be compact.



Proposition 40. IfX is compact, then every infinite subsetA ⊂ X has a limit point.

Proposition 41. IfX is a compact metric space, then every sequence has a convergent subsequence.

We can define the diameter of a subset S of a metric space to be

diam(S)
.
= sup d(x, y).

The Lebesgue Number Lemma says that given an open cover of a compact metric space, we can always
find a “max diameter” such that all subsets with smaller diameter fit entirely within one of the sets in the
cover.

Theorem 15 (Lebesgue Number Lemma). IfX is a compact metric space with open cover U , then
there is some δ > 0 such that all subsets S ⊂ X with diam(S) < δ lie entirely in someU ∈ U .

Definition 27. A spaceX is limit point compact if every infinite subset ofX has a limit point.
It is sequentially compact if every sequence of points inX has a convergent subsequence.

Proposition 42. Compactness implies limit point compactness.

Theorem 16. IfX is metrizable, then the following are equivalent:

1. X is compact.

2. X is limit point compact.

3. X is sequentially compact.



5 H O M O T O P I E S

5.1 H O M O T O P I E S

Definition 28. Maps f, g are homotopic, written f ' g, if there is some continuous map F :
X × I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x).

We can denote F (·, t) by ft. With this notation, f0 = f and f1 = g.

We say that a map is nullhomotopic if it is homotopic to a constant map. Suppose that f and g agree
onA, then f and g are homotopic relA if there is a homotopy between them that fixesA. Note that if f
and g agree onA and are homotopic via the straight line homotopy, then they are homotopic relA.

Definition 29. Two paths f, g are path homotopic, written f 'p g, if they are homotopic rel
{0, 1}.

The straight line homotopy between f, g : X → Rn is defined

F (x, t) = (1− t)f(x) + tg(x).

IfX is convex, then the straight line homotopy can be used to show that any twomaps (and, by extension,
paths) are homotopic.

We can “multiply” paths α and β by first traveling along α, then β, both at double speed. We denote
the product ofα and β byαβ. Note that although this is similar to function composition, we readαβ left
to right instead of right to left.

26



Proposition 43. Path multiplication respects path homotopy, i.e. if α 'p α′ and β 'p β′, then
αβ 'p α′β′.

I do this for general homotopies in the next section.
A loop atp is a path that starts and ends atp. Path homotopies easily extend toworkwith loops instead,

since loops are just a special type of path.

Figure 5.1: The solid loops are homotopic, but the dashed loop is not homotopic to either of the others
because of the hole in the space.



5.2 T H E F U N D A M E N TA L G R O U P

Lemma 3. Homotopy and homotopy relA are both equivalence relations.

Definition 30. The fundamental group ofX at p is

π1(X, p)
.
= {[α] | α a loop at p}

with group operation [α][β] .
= [αβ].

Since path multiplication respects path homotopy, the above group operation is well-defined for all
representative α,β.

Proposition 44. If p, q are in the same path component ofX , then π1(X, p) ∼= π1(X, q).

Proof. There must be a path γ from p to q, so if α is a loop at p, then γ−1αγ is a loop at q. Then it’s easy
to check that

φ : π1(X, p) → π1(X, q),

[α] 7→ [γ−1αγ]

is a well-defined homomorphism with homomorphic inverse, i.e. an isomorphism.

Corollary 6. IfX is path connected, then all points inX have isomorphic fundamental groups.

Definition 31. If we have a continuous map f : (X,x) → (Y, y), then this induces a homomor-
phism between fundamental groups

f∗ : π1(X,x) → π1(Y, y)

[α] 7→ [f ◦ α]

called the induced homomorphism of f .

This being a homomorphism follows from the distributivity of function composition.

Proposition 45. If f ' f ′ and g ' g′, then gf ' g′f ′.

Proof. If f ' f ′ via F and g ' g′ viaG, then the composite map

X × I Y × I Z
F×1I G

maps (x, 0) 7→ (gf)(x) and (x, 1) 7→ (g′f ′)(x).



Corollary 7. If f ' g, then f∗ = g∗. Only works if f and g are homotopic rel endpoints, I think.
Otherwise the equivalence classes are in different fundamental groups.

Proof. Since f ' g andα ' α, we know f ◦α ' g ◦α, so f∗([α]) = [f ◦α] = [g ◦α] = g∗([α]).

Proposition 46. If we have a sequence of continuous maps

X Y Z,
f g

then their induced homomorphisms satisfy (g ◦ f)∗ = g∗ ◦ f∗.

Theorem 17. IfX ∼= Y , then π1(X, p) ∼= π1(Y, q).

Proof. SupposeX ∼= Y via f , then we can picture the situation as below.

(X, p) (Y, q)

f

g=f−1

These two maps then induce homomorphisms between the fundamental groups.

π1(X, p) π1(Y, q)

f∗

g∗

Since f∗g∗ = (f ◦ g)∗ = (1Y )∗ = 1π1(X,p) and g∗f∗ = (1X)∗ = 1π1(Y,q), the two fundamental
groups are isomorphic.

Proposition 47. π1(X, p)× π1(Y, q) ∼= π1(X × Y, (p, q)).

Definition 32. X if simply connected if it is path connected and π1(X, p) is trivial for some p
(and thus for all p).

Theorem 18. π1(S
1) ∼= Z.

A simple statement, but it has lots of important corollaries. The following is one of them.

Theorem 19 (Brouwer Fixed Point). IfX ∼= D2 (the closed unit disk), then every continuous map
f : X → X has a fixed point.



Proof. We’ll prove this for the case when X actually is D2, since the homeomorphic case follows easily
from it. Assume there’s no fixed point, then the following map is well-defined: draw a ray starting at
f(x) and going through x, then map x to the point where this ray intersects ∂D2 = S1. But this map
is continuous and a retraction onto S1, (did I put the following in the notes anywhere? I remember it
from hw) so it induces a surjection π1(D

2) ↠ π1(S
1). But this is impossible since π1(D

2) ∼= 1 and
π1(S

1) ∼= Z. Thus there must be a fixed point somewhere onD2.



5.3 C O V E R I N G S PA C E S

Definition 33. A covering space ofB is a spaceE and a coveringmap p : E → B. For allx ∈ B,
there is a neighborhoodU of x such that p−1(U) is a disjoint union of homeomorphic copies ofU .
Such neighborhoods are called evenly covered.

Equivalently, a covering space of is a fiber bundle with discrete fibers. Note that p must be continuous
and surjective. This is more about open sets than points. Once we getU from x, we forget about x in the
definition.

Example 12. R is a covering space of S1. One possible covering map is

p : R → S1

t 7→ (cos 2πt, sin 2πt).

Definition 34. If p : E → B is a covering map and f : X → B is continuous, then we say that f̃
lifts f if p ◦ f̃ = f .

E

X B

p

f

f̃

Proposition 48. Covering maps are open.

Corollary 8. Covering maps are quotient maps.

The converse isn’t necessarily true.
We can lift homotopies (and by extension, more specific maps like paths) to a covering space. Since an

evenly covered neighborhood can containmultiple copies of an open set in the base space, though, we need
to specify the starting point in order to make the lift unique.

Theorem 20 (Homotopy Lifting Extension Property). Fix a homotopy F : X × I → B and
suppose F |X×{0} has a lift f . Then there is a unique lift F̃ of F that extends f .

X E

X × I B

f

1X×0 p

F

∃! F̃

This is saying that if we fix what happens at t = 0 in the lift, then the lift is unique.



Corollary 9 (Path Lifting Lemma). A path γ inB has a unique lift γ̃ if we fix γ̃(0).

E

I B

pγ̃

γ

Corollary 10 (Path Homotopy Lifting Lemma). Suppose γ1, γ2 are paths in B that both start at
x. Let F be a path homotopy between them rel x. If we specify some x̃ ∈ p−1(x) and fix a lift f of
F |I×{0}, then there is a unique lift of F rel x̃, that extends f .

I E

I × I B

1I×0

f

p

F

∃! F̃



5.4 T H E B O R S U K - U L A M T H E O R E M

Theorem 21. SupposeX = A∪B withA,B path connected and open andA∩B path connected.
If iA and iB are the usual inclusion maps, then for all [γ] ∈ π1(X,x), we can decompose it into

[γ] = [α1] · · · [αk],

where each [ai] lies either in iA∗(π1(A, x)) or iB∗(π1(B, x)).

Corollary 11. If n ≥ 2, then Sn is simply connected.

Proof. (Sn−{a point}) ∼= Rn by stereographic projection. DefineU to beSn minus the north pole and
V to be Sn minus the south pole. ThenU, V ∼= Rn, so

π1(U), π1(V ) ∼= π1(Rn) ∼= {e} .

Since n ≥ 2, U ∩ V is path connected. Then by the previous theorem, we can decompose any [γ] ∈
π1(S

n) into the product of trivial equivalence classes, so [γ] = [e]. Thus π1(S
n) is trivial and Sn is

subsequently simply connected.

Corollary 12. You cannot cover Sn with n + 1 antipode-free (doesn’t contain antipodal points)
closed sets.

Proof. Suppose {Ai}n+1
i=1 are closed and cover Sn. Let di : Sn → R be the distance toAi, i.e.

di(x) = inf
y∈Ai

‖x− y‖.

This is continuous, so

f : Sn → Rn

x 7→ (d1(x), . . . , dn(x))

is also continuous. Then by Borsuk-Ulam, f(x) = f(−x) for some x ∈ Sn. This implies di(x) =
di(−x) for all i. If di(x) = di(−x) = 0 for some i, then x,−x are both limit points ofAi. SinceAi is
closed, though, x,−x ∈ Ai. If none of the di(x) are 0, then x,−x 6∈ Ai for 1 ≤ i ≤ n, which forces
x,−x ∈ An+1.

Theorem 22 (Borsuk-Ulam). Every continuous map f : Sn → Rn satisfies f(x) = f(−x) for
some x ∈ Sn.

Corollary 13. If Y ∼= Rn, then every continuous map f : Sn → Y satisfies f(x) = f(−x) for
some x ∈ Sn.



Proof. The situation is depicted below.

Sn Y Rnf

g

g−1

The composition gf is a continuousmapSn → Rn, sowe can apply Borsuk-Ulam to find a pointx ∈ Sn

such that (gf)(x) = (gf)(−x). But this is also a fixed point of f , as

f(x) = g−1(gf(x)) = g−1(gf(−x)) = f(−x).



5.5 H O M O T O P Y T Y P E

A homeomorphism f : X → Y is a map satisfying f ◦ f−1 = 1Y and f−1 ◦ f = 1X . We can loosen
this restriction to gain the notion of a homotopy equivalence.

Definition 35. A homotopy equivalence f : X → Y is a map satisfying

f ◦ f−1 ' 1Y ,

f−1 ◦ f ' 1X .

We say that two spacesX and Y are homotopy equivalent or have the same homotopy type if we
can find a homotopy equivalence between them. We denote this byX ' Y .

Proposition 49. If f, g : X → Y are homotopic with induced maps f∗, g∗ on π1(X, p), then

π1(Y, f(p)) ∼= π1(Y, g(p))

via an isomorphism γ̂ satisfying γ̂f∗ = g∗.

π1(X, p) π1(Y, f(p))

π1(Y, g(p))

f∗

g∗
γ̂

Proof. Suppose f ' g via F , then γ(t) .
= F (p, t) is path from f(p) to g(p). Then

γ̂([α])
.
= [γ−1 · α · γ]

is an isomorphism between π1(Y, f(p)) and π1(Y, g(p)). Show γ̂f∗ = g∗.

Proposition 50. IfX ' Y via f , then π1(X, p) ∼= π1(Y, f(p)).

Proof. Suppose

(X, p) (Y, q)

f

g

where fg ' 1Y and gf ' 1X . Then since homotopic maps have the same induced homomorphisms,
f∗g∗ = (fg)∗ = (1Y )∗ and g∗f∗ = (gf)∗ = (1X)∗, so the two fundamental groups are isomorphic.

This shows that all we need for fundamental groups to be isomorphic is for the original spaces to be ho-
motopic. The earlier result when the original spaces were homeomorphic is then a special case of this.

When working with homotopy type, entire spaces can behave like single points. These are exactly the
spaces whose identity maps are nullhomotopic.



Definition 36. A spaceX is contractible if 1X is nullhomotopic.

Proposition 51. A space is contractible if and only if it has the homotopy type of a one-point space.



5.6 D E F O R M AT I O N R E T R A C T S

Definition 37. SupposeA ⊂ X . A retraction ofX ontoA is a map r : X → A that fixesA. If
i : A ↪→ X is the usual inclusion map, then this means r ◦ i = 1A. We callA a retract ofX .

A deformation retraction ofX ontoA is a map F : X × I → X such that

F (x, 0) = x,

F (a, t) = a ∀t,
F (x, 1) ∈ A.

We callA a deformation retract ofX .

Suppose i : A ↪→ X is the usual inclusion, then a retraction satisfies r ◦ i = 1A.
Note that F is a homotopy rel A between 1X and i ◦ r, where r : X → A is some retraction ofX

ontoA. Thus an equivalent definition of a deformation retract is that there is some retraction r ofX onto
A such that i ◦ r ' 1X .

Retractions take a space and teleport it onto a subset of itself in a continuous way. Deformation re-
tractions have an added time component: they make the space flow onto a subset of itself in a continuous
way.

Deformation retracts are useful because they let you crush part of a space without changing its homo-
topy type.

Proposition 52. IfA is a deformation retract ofX , thenA ' X .

Proof. SinceA is a deformation retract ofX , then there’s some retract r : X → A such that i ◦ r ' 1X .
Since r is a retract, it must satisfy r ◦ i = 1A.

Note that this isn’t necessarily true for ordinary retracts. Take any non-contractible space X (like a
sphere) and map everything to one point (call this subset Y ). Since this map is constant, it’s continuous
and, subsequently, a retraction. But sinceX wasn’t contractible and any map f : Y → X is constant,
there’s no function g : X → Y such that fg ' 1X . ThusX and Y can’t have the same homotopy type.
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