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1 TOPOLOGICAL SPACES

1.1 TOPOLOGICAL SPACES

Definition 1. Let X be a set, then a topology on X is a collection 7 of subsets of X such that
1. 9, XeT,
2. Upes Ua € T,and

3. N, Ui eT.

Elements of a topology are called open sets.

Examplel. 1. “Indiscrete” topology: 7; = {&, X}
2. “Discrete” topology: T4 = {all subsets of X }

Definition 2. Let 7, 7" be topologies on a set X, then 7 is finer than 7" if 7/ C 7. T is coarser
than 77 if T C T". The notions of strictly finer and strictly coarser follow.

From this we see that “fine” is a notion of a large topology, and “coarse” is a notion of a small topology.

Example 2. The lower limit topology on R is given by the basis
B ={[a,b) | a <b}.

Itis strictly finer than the standard topology on R: since |J,,c[a 41/, b) = (a, b), it contains the
standard topology, but [a, b) is not open in the standard topology, so it is strictly finer.

Example 3. Let X be any set, then the finite complement topology is defined
Tr={U C X | X — Uisfinite} U{@},

Checking that this is a topology boils down to just using DeMorgan’s Laws.




12 CLOSED SETS AND LIMIT POINTS

Definition 3. Aset A C (X, 7T)isclosedif X — Aisopenin X.

Theorem 1. Let (X, T) be a topological space, and let F' denote a closed set of X, then
1. @ and X are closed,
2. ﬂaej F,, is closed, and
3. UY, Fi is closed.
Proof. This is a straightforward application of DeMorgan’s Laws. O
Properties of a closed set A in a subspace Y of X:

¢ Ais the intersection of Y and a closed set in X.

e If Y isclosed in X, then A is closed in X.

Proposition 1. Let Y be a subspace of X. Then A is closed in Y if and only if it is equal to the
intersection of a closed set of X with Y.

Proposition 2. Let Y be a subspace of X. If A is closedin Y and Y is closed in X, then A is closed
in X.

Definition 4. The interior of a set A, denoted A°, is the union of all open sets contained in A.
The closure of a set A, denoted A is the intersection of all closed sets containing A.

The closure of a set is clearly closed, and the interior of a set is clearly open. It is also clear that if A is
open, then A° = A, and if A is closed, then A = A. We also have the obvious relation A° C A C A.

We have to be careful when describing closures. Given a subspace Y of X, the closure of A in X is
generally not the same as the closure of A in Y. In this case, we use A to denote the closure of A in X (the
overall space). We relate this to the closure of A in Y (the subspace) with the following proposition.

Proposition 3. Let Y be a subspace of X, andlet A C Y. Then Ay = AxNY.

Definition 5. A neighborhood of a point X is an open set containing .




Theorem 2. Let A be a subset of a topological space X, then
1. z € Aifand only if every neighborhood of x intersects A, and

2. Supposing the topology of X is given by a basis, then z € Aifand only if every basis element
B containing  intersects A.

Make sure you have an intuitive understanding of why this is true.
Definition 6. Let A C (X, 7), then 2 € X is a limit point of A if every open neighborhood of
x intersects A at some point other than x.

Equivalently, « belongs to the closure of A — {z}. Note that x need not lie in A. Think about
this.

Theorem 3. Let A C (X, T), and denote the set of limit points of Aby A’. Then A = AU A’

Corollary 1. A subset of a topological space is closed if and only if it contains all its limit points.

Proof. Let A C (X, T). Then Aisclosed ifand onlyif A = A= AU A’,and A = AU A’ ifand only
ifA' c A O



1.3 BASES

Definition 7. Let 7 be a topoloy on X, and let B C 7. Then B is a basis for 7 if every open set
of T can be written as the union of elements of /3.

Proposition 4. Let 7 be a topology on X, and let BB be a collection of subsets of X. Then B is a
basis for 7 if and only if

1. BC T;and
2. foreachU € T andp € U, thereisa B € Bsuchthatp € B C U.

Proof. The forward direction follows from every open set of 7 being the union of elements of B. For the
backward direction, sincep € B, C U forallp € U, wehave U = UpEU By, so every open set of T is
the union of elements of B. O

Figure 1.1: Forany U € T, eachz € U liesinsome B, € Bfor B, C U.

Not every set of subsets of X will generate a topology, so we need conditions for a collection B to be a

basis for any topology.

Proposition 5. Let B be a collection of subsets of X. Then B generates a topology if and only if

L Upes = X.
2. given By, By € Bandx € By N By, thereisa B3 € Bsuchthatz € B3 C By N Bo.

Proof. Forward: (1) X must be open, so X is the union of the elements of B. (2) Since B; and B are
both open in the topology generated by B, their intersection is, as well. Then since B is a basis for this
topology, we can find a satisfactory Bs.

Backward: The topology generated by a set B is the collection of all unions of elements of B. It is
clear that @ is in it, and condition (1) implies that X is, as well. Arbitrary unions are in the topology by
definition. Induction on condition (2) shows that the topology also contains finite intersections. O



Figure 1.2: Condition (2) in Proposition S.

Note 1. Since B exists independently from any topology, it doesn’t make sense to describe its mem-
bers as “open” until after we’ve generated a topology from it. Once we’ve done so, though, it should
be clear that every basis element is open in the generated topology.

We can also get a notion of how relatively fine or coarse a topology is by using its basis.

Proposition 6. Let B, B be bases for the topologies 7, 7' on X, respectively. Then 77 is finer than
T ifand onlyif forall B € Band z € B, thereisa B’ € B’ such thatz € B’ C B.

Proof. First we show the backward implication. Let U € T, andletx € U. Since B generates T, there is
a B C Bsuchthatz € B C U. By assumption, there is thena B’ € 3’ suchthatz € B’ ¢ B C U.
ThusU € T7,so 7" is finer than 7.

Now we show the forward implication. Let B € B, andletx € B, then B € 7. By assmption,
T C T',s0 B € T as well. Then by the definition of a generated topology, there isa B’ C B’ such that
x € B'C B. O

Proposition 7. The topology generated by a basis is the smallest topology containing that basis.




14 SUBBASES

Definition 8. A subbasis S for a topology 7 on X is a collection of subsets of X whose finite
intersections form a basis for 7.

Subbases are easier to construct than bases, but the construction of a topology from a subbasis involves
an extra step, namely the finite intersections. What we are doing is creating a basis B from S by taking
finite intersections of the subbasis elements. Then we are taking B and constructing 7 by taking arbitrary
unions, as is usual.

N
Mi=1 Uaeg
B

S

Figure 1.3: The process for constructing a topology using a subbasis S.

Proposition 8. Let 7 be a topology on X, and let S be a collection of subsets of X. Then S'isa
subbasis for 7" if and only if

1. S§C T;and

2. foreachU € T and p € U, there is a finite intersection [);__, S; of elements of S such that
pE ﬂ?=1 S; CU.

Proof. This follows from Proposition 4 (the analogue of this proposition for bases). When proving both
directions, there’s just an extra step to go from a genric basis element to a finite intersection of elements of

S. O

Proposition 9. Let S be a collection of subsets of X. Then S generates a topology if and only if S
covers X.

Proposition 10. The topology generated by a subbasis is the smallest topology containing that sub-
basis.




1.5 CONTINUOUS FUNCTIONS

The category Top has topological spaces as objects and continuous functions as morphisms.

Definition 9. Let X, Y be topological spaces, then f : X — Y is continuous if for all U open in
Y, f~Y(U)isopenin X.

Proposition 11. If Y has basis B and f~!(B) isopenin X forall B € B, then f : X — Yis
continuous. Similarly, if Y has subbasis S and f~!(S) isopenin X forallS € S,then f : X - Y

is continuous.

Proof. The preimage of any open set if the union of preimages of basis elements. The preimage of any basis
element is the finite intersection of preimages of subbasis elements. O

Theorem 4. Let X and Y be topological spaces, and let f : X — Y, then the following are
equivalent:

1. f is continuous.

2. Forall A C X, f(A) C f(A).

3. Forall BclosedinY, f~1(B) C f~%(B).
4. Forall Bclosedin Y, f~1(B)is closed in X.

S. Forall z € X and for each neighborhood V' of f(z), there is a neighborhood U of z such
that f(U) C V.

Example 4. If X has the discrete topology, then any function oxt of X is continuous. If X has the
indiscrete topology, then any function 7zz0 X is continuous.

Definition 10. A homeomorphism is a continuous function with continuous inverse (an isomor-
phism in Top).

Equivalently, a homeomorphism is a bijective function f : X <+ Y such that U is open in X if
and only if f(U) isopeninY’.



'\_/

Figure 1.4: A homeomorphism f.

Theorem 5 (The Pasting Lemma). Let X = AU B, where A and B are either both closed or both
openin X. Let f : A — Y and g : B — Y be continuous. If f(z) = g(z) forallz € AN B,
then the function A : X — Y given by

o) = flz) z€A
H(z) {g(x) r€B

is continuous.

Proof. Suppose Aand B areboth closed. Let C'be closedin Y, then A=} (C) = f~1(C)Ug~1(C). Since
f and g are continuous, both f~1(C) and g~*(C) are closed in A and B, respectively. Since both A and
B are closed in X, both preimages are also closed in X. Thus h~*(C) is closed in X and h is subsequently

continuous.

To show this when A and B are both open, replace the word “closed” with the word “open” in the
above paragraph.

Note that the condition f(x) = g(z) forallaz € AN B is not needed in this proof. Itis only necessary

to make h an actual function.

Note 2. If f : A x B — X instead, there is 70 useful criterion for the continuity of f.

The following maps are easily checked to be continuous:

* Constant maps.
* Inclusion maps.
¢ Restrictions of continuous maps.

* Compositions of continuous maps.



2 SPECIAL TOPOLOGIES

21 THE SUBSPACE TOPOLOGY

There is a natural way of a subset inheriting the topology of the set it lies in. The following definition is

easily checked to actually be a topology.

Definition 11. Let (X, 7T") be a topological space. If Y C X, then
Ty ={YNU|UeT}

is the subspace topology on Y. With this topology, Y is called a subspace of X.

Proposition 12. Let BB be a basis for the topology of X, then
Byi{BﬂY|BEB}

is a basis for the subspace topology on Y.

Proof. Lety € UNY ,where U isopenin X. Thereexists B € Bsuchthaty € B C U,soy € BNY C
uny. O

Proposition 13. Let Y be a subspace of X, and let U be open in Y and Y be open in X. Then U

isopen in X.

Proof. UisopeninY,soU =Y NV forsome V openin X. Both sets Y and V are open in X, so their

intersection U must be as well. O

10



22 THE INITIAL TOPOLOGY

Definition 12. Let X beasetand {Y}, c.7 2 collection of topological spaces, and suppose we have
functions f; : X — Y;. The initial topology on X for these f; is the coarsest topology on X such
that each f; is continuous.

Proposition 14. The initial topology on X is generated by the subbasis

S={f7'(U) i€ J;UopeninY;}.

Think about this...

This is a nice generalization of the subspace and product topologies. In the next section, we’ll derive
the product topology as the initial topology on a Cartesian product that makes the canonical projections
continuous. The initial topology on a subset such that the inclusion function is continuous is actually the

subsapce topology.

Example 5. SupposeY C X, and consider the inclusion function¢ : S < X. The initial topology
is generated by
{i7'(U) |UopeninX} ={Y NU | U openin X},

but this is just the subspace topology.
Why bother with saying “generated” if it’s equal? Are there counterexamples?




23 THE PRODUCT TOPOLOGY

It would be natural to define the product topology as
P={UxV |Uopenin X,V openinY},

but this isn’t enough to give a topology since you can construct examples where the union of elements in
this set don’t lie in the set.

This set 4s, however, perfectly valid as a basis, since ;1 (U x V') = X x Y and (U1 x V1) N (U2 x
‘/2) = (U1 N UQ) X (Vl N V2> ep.

Definition 13. The topology generated by P is the product topology on X x Y.

Proposition 15. If Bx is a basis for X and By is a basis for Y, then Bx X By is a basis for the
product topology.

Proposition 16. The product and subspace topologies “commute”.

Proof. 1t’s straightforward to show that the product of two subspaces and the subspace of a product both
have the same basis. ]

Where to put the above stuff?

Definition 14. The Cartesian product of { X, }, 4 is the set

HXa{f:A% U Xa

acA acA

fla) € Xa}.

Each function f represents a single “point” in the product.

Example 6. Suppose A = {1,...,n}and X, = Rforall . Then each f in the Cartesian product
is a function

f:AL...,n} =R

Since there are only a finite number of X,’s, we can write each f as a tuple

(f(), £(2),-.., f(n)).

Thus there is a clear bijection between [[_; X, and R™.

Extending the product topology to the case of a general Cartesian product is tricky. Given [, Xa,
we could naively say that the topology on it should be given by a basis

B:{HBQ BQEBO(}7




where By, is a basis for just X. If we have a finite number of s, this basis is just every possible ordered
combination of basis elements from each X,:

(Blh 3217 <.
(Blla 3227 s

nl)

., Bn),
'7B712)a

(Bllv 3227 R Bnn)v

The topology generated by this basis is the box topology, and although simple, ends up not being the
best notion of a topology on infinite products because it’s actually too fine. This ends up making some
“obviously” continuous functions discontinuous.

Example 7. Define

R = ][ R,

1€ZT
then the function
f:R—=R™
e (z,x,...)
seems like it should be continuous; however, if R* has the box topology, then the preimage under

foftheopenset U = [[;cp+ (—1/i,1/i)is f~1(U) = {0}. Thisisn’t open in R, so f is discon-

tinuous.

We want the product topology to, in a sense, be continuous in each of its components. Unlike the box
topology, though, we don’t want it to be 700 fine. The way we formalize this is by saying that we want to
find the coarsest topology on [ | X such that the canonical projections

A H Xa—>X5
acA

(f: A= JXa) = £8)
are continuous. This is just the initial topology on [ | X, with respect to the projections.
Definition 15. The product topology is generated by the subbasis
{r3'(Us) | Uy openin X, } .

The basis for the product topology is then of the form [ | Uy, where only finitely many of the U,, satisfy
Uy # Xo. Compare this to the basis for the box topology, where arbitrarily many of the U, can be distinct
from X,.

Proposition 17. The function f : Y — [[ X, is continuous if and only if f,, is continuous for all
a.




Proof. If f is continuous, then f, = T4 o f is the composition of continuous functions and so is itself
continuous. Conversely, for any subbasis element 7 (Uy) for U, open in X, we have

FHS N (Ua) = (a0 )71 (Ua) = fo ' (Ua),

which is open since f, is continuous. O



3 SPECIAL SPACES

31 HAUSDORFF SPACES

We say that a sequence {z,, } is eventually in U if there is some N such that z,, € U whenn > N.

Definition 16. {x,, } converges to x if it’s eventually in every open neighborhood of z.

Proposition18. x,, — xifand onlyif {x,, } iseventually in every basis/subbasis element containing
T.

Example 8. In the discrete topology, «,, — x if {2, } eventually equals z.
In the indiscrete topology, every sequence converges to every point.

If we want limits to be unique, we have to enforce certain conditions on our spaces.

Definition 17. A space is T} if every pair of distinct points have neighborhoods not containing the
other point. The space is HausdorfF if these neighborhoods are disjoint.

Proposition 19. A space is T} if and only if all single points are closed.

Proof. Forward: Suppose X is T, then fix x € X. Thenfory € X — {x}, there is an open Uy, such
thaty € Uy C X — {z},s0 X — {z} =J, Uy. Then X — {x} is open so {x'} is closed.

Backward: Suppose all single points in X are closed. Fixz,y € X, then X — {z} and X — {y} are
the open sets we need to show that X is 7. O

Corollary 2. A spaceis T} if and only if all finite point sets are closed.

Proof. Do I even need one? Kinda obvious.

Proposition 20. Every finite set in a Hausdorff space is closed.

Proof. Hausdorft spaces are 1.

15



Proposition 21. Sequences converge to unique points in Hausdorft spaces.

Proof. Suppose {z,} C X such thatz, — = € X. Ify # z, then since X is Hausdorff we can find
disjoint open neighborhoods U and V of « and y, respectively. The set U contains all but finitely many of
the points in {2, }, so V' can only contain finitely many of the points in {z,, }. Thus z,, cannot converge
to y. O

Proposition 22. The product of two Hausdorff spaces is a Hausdorft space.

Proof. Do this. O]

Proposition 23. A subspace of a Hausdorft space is Hausdorff.

Proof. Suppose X is Hausdorff and that Y is a subspace of X with distinct points « and v. Then w and v
are also distinct points of X, so by the regularity of X, they are separated by disjoint open sets U and V' in
X.ThenY NU and Y NV are the desired open sets of Y. O



32 QUOTIENT SPACES

Definition 18. Suppose X has a partition P. The quotient space X* is P equipped with the
quotient topology:
Uisopenin X* <= 7 '(U)isopenin X,

where 7 is the canonical projection

m: X — X*
x> [x]

induced by the partition P.

Note that 7 is necessarily surjective and continuous.
Note 3. The quotient topology is the finest topology such that 7 is continuous. Itis the final topol-

ogy with respect to 7. Section about final topology?

We can equivalently define quotient spaces in terms of images of certain functions.

Definition 19. A quotient map is a surjective continuous map p : X — Y such that
UisopeninY <= p (U)isopenin X.

Since p is surjective, we can use it to define a partition of X: P = {p~'(y) | y € Y} . Aquotient map
is a homeomorphism that isn’t necessarily one-to-one. Thus if we partition X based on this equivalence
relation induced by p, we get injectivity and p then induces a homeomorphism between X * and Y (see the
next theorem). This also gives us a canonical projection 7, : X — X™.

Quotient map is not necessarily open or closed map. This is subtle.

Proposition 24. Supposep : X — Y isa quotient map and Z is any space. Then f : Y — Zis
continuous if and only if f o p : X — Z is continuous.

X-*sy 1.z

fop

Theorem 6. Suppose p : X — Y is a quotient map and X * is the quotient space induced by p.
Then X* 2Y.

X

NS

X*—=Y



Note 4. Given a surjective map p, the quotient topology is the final topology with respect to p.

Definition 20. Amap f : X — Y is open if it maps open sets to open sets, and it’s closed if it
maps closed sets to closed sets.

Proposition 25. Suppose f : X — Y is surjective and continuous. If it’s open or closed, then it’s
a quotient map.

Corollary 3. If f : X — Y is continuous and surjective, X is compact, and Y is Hausdorff, then
f is a quotient map.

Proof. Suppose Aisclosedin X, then since X is compact, sois A. Since f is continuous, f(A) isacompact
subset of Hausdorft Y, so itis closed. Thus f is a closed continuous surjection, so it’s a quotient map. [

If X = AU B, then we can make the union disjoint in a sense by introducing more dimensions.
Define
AUB=(Ax{0})U(Bx{1})

(which is a subset of X X {0, 1}) with canonical projection

j:AUB—= X
(x,1) — x.

Theorem 7 (Gluing Maps). Suppose X = AUBand f: A — Z,g: B — Zagreeon AN B.
If the canonical projection j : A B — X is a quotient map, then the obvious concatenation of f
and g is continuous.

The pasting lemma is a corollary of this theorem. Go over this, I guess.



33 METRIC SPACES

Definition 21. The metric topology 7; on X induced by d is generated by the basis

By = {By(z,e) | x € X,e > 0}.

Proposition 26. The following give the same topologies on R":
L da(,y) = [lz =yl
2. di(z,y) = 32 |z — wil,
3. doo(z,y) = max; |z; — y;|,and

4. the product topology.

We say a topological space is metrizable if there is some metric that induces its topology.

Proposition 27. Metrizable spaces are Hausdorff.

Proof. Do this. Should rely on metric space being Haus. O

A metric space X is bounded if thereisan 2 € X and R > 0 such that B(z, R) contains all of X.
Equivalently, we can say that there is some R’ such that d(a,b) < Rforalla,b € X.

Proposition 28. Suppose d, d’ are metrics on X. Then T3 C Ty ifand only if forall z € X and
alle > 0, there is some § > 0 such that By (z,d) C By(z,¢).

Proposition 29. Given a metric space (X, d), define
B,={B(d,e) |z € X,0<e <1},

then (B)) = (Ba) = Ta.

Proposition 30. Define the bounded metric on X by

d(x,y) = min{d(z,y),1},

then 73 = T3

Proof. Whene < 1,
By(z,e) ={y € X |d(z,y) <e} ={y € X | min{d(z,y),1)} < e} = By(x,¢).

The result then follows from Proposition 29. O



4 TOPOLOGICAL PROPERTIES

41 SEPARABILITY

Definition 22. A topological space is separable if it has a countable dense subset.

Example 9. R is separable because Q = R.

20



42 CONNECTEDNESS

Definition 23. A space is connected if it’s zot the union of 2 nonempty disjoint open subsets.

Since the whole space is the disjoint union of the 2 sets, the sets are also both closed. Thus we can
separate a space with 2 nonempty disjoint closed sets, too.

Theorem 8. The following are equivalent:
1. X is connected.
2. AC Xisbothopenandclosed <= A = XorX = @.

3. Whenever X = AU B with A, B nonempty and disjoint, one of A, B contains a limit point
of the other.

Proposition 31. Y C X is disconnected if and only if there are disjoint nonempty A, B such that
AU B =Y and neither A nor B contains a limit point of the other.

Proposition 32. Suppose U, V are disjoint and open in X. If Y is connectedand Y C U UV,
then Y lies entirely in one or the other.

Proof. If not, U and V separate Y, contradicting its connectedness. O

Theorem 9. A subset of R is connected if and only if it’s an interval.

Proposition 33. The continuous images of connected spaces are connected.

Corollary 4. If X =2 Y, then X is connected if and only if Y is.

Theorem 10 (Intermediate Value Theorem). If f : [a, b] — Riscontinuousand f(a) < ¢ < f(b),
then there is some = € [a, b] such that f(z) = c.

Lemma 1. If {A,} is a collection of connected subspaces of X that all intersect, then their union
U, Aq is connected.



Proposition 34. If X and Y are connected, then X X Y is connected.

Proposition 35. If A is connectedand A C B C A, then B is also connected.

Definition 24. Define an equivalence relation by saying x ~ y if there is a connected component
A containing z and y. Then the equivalence classes of ~ are the (connected) components of the
space.

Example 10. In the discrete topology and in QQ with the subspace topology inherited from R, the
components are single points.

Theorem 11. The components of X are closed, disjoint, connected, and union to X. Every con-
nected subset is a subset of a component.




43 PATH CONNECTEDNESS

Definition 25. A path in X from x to Y is a continuous function v : [0,1] — X such that
7(0) = xand (1) = y. We say X is path connected if we can find paths between all points in X.

Proposition 36. The continuous images of path connected spaces are path connected.

Proposition 37. Path connected spaces are connected.

Proof. If a path connected space is disconnected, then you can show that [0, 1] is also disconnected. But
we know [0, 1] is connected, so this is a contradiction. O

Example 11 (The Topologist’s Sine Curve). The converse of the previous proposition is false in
general. Let

T = {(z,sin(1/z) | z > 0} U {(0,0)},

then T is connected but not path connected.



44 COMPACTNESS

Definition 26. A topological space is compact if every open cover has a finite subcover.

A finite union of compact spaces is compact since the finite union of finite subcovers is still finite.

Proposition 38. Continuous images of compact spaces are compact.

Proposition 39. 1. Compact subsets of Hausdorff spaces are closed.

2. Closed subsets of compact spaces are compact.

Theorem 12 (Extreme Value Theorem). If X iscompactand f : X — R, then f attainsitsinfimum
and supremum on X.

Corollary 5. If f : X — Y isa continuous bijection, X is compact, and Y is Hausdorff, then f is
a homeomorphism.
Add quotient map version here?

Proof. Let Abe closed in X, then since X is compact, A must also be compact. Then f(X) is a compact
subset of Hausdorft'Y’, so it is closed. Thus f is a closed map, so its inverse is also continuous. O

Lemma 2 (Tube Lemma). Suppose Y is compactand g € X. If N is a neighborhood of g X Y,
then there is some neighborhood U of zg such that U x Y C N.

Theorem 13 (Tychonoft). Arbitrary products of compact spaces are compact.

Theorem 14 (Heine-Borel). K C R"™ (with the standard topology) is compact if and only if it’s
closed and bounded.

Proof. Forward: Since R” is Hausdorft and K is compact, K is also closed. Additionally, the set of open
balls { B(0,7)}, - o covers K, so we can find a finite subcover. Because of the nested structure, that means
there’s a single B(0, r) containing K, i.e. K is bounded.

Backward: Since K is bounded, K C B(0,r) for some . Then K C [—r,7]™, which we know to
be compact. Since K is the subset of a compact set and it’s closed by assumption, K must be compact. [



Proposition 40. If X is compact, then every infinite subset A C X has a limit point.

Proposition 41. If X isa compact metric space, then every sequence has a convergent subsequence.

We can define the diameter of a subset S of a metric space to be
diam(S) = sup d(z,y).

The Lebesgue Number Lemma says that given an open cover of a compact metric space, we can always
find a “max diameter” such that all subsets with smaller diameter fit entirely within one of the sets in the
cover.

Theorem 15 (Lebesgue Number Lemma). If X is a compact metric space with open cover U, then

there is some § > 0 such that all subsets S C X with diam(.S) < 4 lie entirely in some U € U.

Definition 27. A space X is limit point compact if every infinite subset of X has a limit point.
It is sequentially compact if every sequence of points in X has a convergent subsequence.

Proposition 42. Compactness implies limit point compactness.

Theorem 16. If X is metrizable, then the following are equivalent:
1. X is compact.
2. X is limit point compact.

3. X is sequentially compact.
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Definition 28. Maps f, g are homotopic, written f =~ g, if there is some continuous map F' :
X x I — Y suchthat F(2,0) = f(z) and F(x,1) = g(x).

We can denote F(-,t) by f;. With this notation, fo = fand f1 = g.

We say that a map is nullhomotopic if it is homotopic to a constant map. Suppose that f and g agree
on A, then f and g are homotopic rel A if there is a homotopy between them that fixes A. Note thatif f
and g agree on A and are homotopic via the straight line homotopy, then they are homotopic rel A.

Definition 29. Two paths f, g are path homotopic, written f ~,, g, if they are homotopic rel

{0,1}.

The straight line homotopy between f, g : X — R" is defined

F(z,t) = (1 —t)f(z) + tg(z).

If X is convex, then the straight line homotopy can be used to show that any two maps (and, by extension,
paths) are homotopic.

We can “multiply” paths o and 3 by first traveling along «, then 3, both at double speed. We denote
the product of @ and 3 by 3. Note that although this is similar to function composition, we read a3 left
to right instead of right to left.
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Proposition 43. Path multiplication respects path homotopy, i.e. if & ), o and § =~,, (', then
aff ~, /B,

I do this for general homotopies in the next section.
Aloop at pisa path thatstarts and ends at p. Path homotopies easily extend to work with loops instead,
since loops are just a special type of path.

Figure 5.1: The solid loops are homotopic, but the dashed loop is not homotopic to either of the others
because of the hole in the space.



52 THE FUNDAMENTAL GROUP

Lemma 3. Homotopy and homotopy rel A are both equivalence relations.

Definition 30. The fundamental group of X atpis

m1(X,p) = {[o] | «aloopatp}

with group operation [a][5] = [af].

Since path multiplication respects path homotopy, the above group operation is well-defined for all
representative 3.

Proposition 44. Ifp, g are in the same path component of X, then 71 (X, p) = m1 (X, q).

Proof. There must be a path 7 from p to ¢, so if a is a loop at p, then v~ Loy is aloop at g. Then it’s easy
to check that

¢ m(X,p) = m(X,q),
[a] = [y ']

is a well-defined homomorphism with homomorphic inverse, i.e. an isomorphism. O

Corollary 6. If X is path connected, then all points in X have isomorphic fundamental groups.

Definition 31. If we have a continuous map f : (X, z) — (Y, y), then this induces a homomor-
phism between fundamental groups

form(X,z) = m(Y,y)
[a] = [foal

called the induced homomorphism of f.

This being a homomorphism follows from the distributivity of function composition.

Proposition 45. If f ~ f'and g ~ ¢/, thengf ~ ¢’ f'.

Proof: If f ~ f'via F and g ~ ¢’ via G, then the composite map

XxIT 2 ywr S,z

maps (z,0) = (g9.f)(x) and (z, 1) = (g'f")(2). O



Corollary 7. If f ~ g, then f. = g.. Only works if f and g are homotopic rel endpoints, I think.
Otherwise the equivalence classes are in different fundamental groups.

Proof. Since f ~ gand o >~ o, weknow foa ~ goa,so fu([a]) = [foa] =[goa] = g.([a]). O

Proposition 46. If we have a sequence of continuous maps

xJtisy 2.2

then their induced homomorphisms satisfy (g o f). = g« o fs.

Theorem 17. If X 2 Y, then 71 (X, p) = m1 (Y, q).
Proof. Suppose X =Y via f, then we can picture the situation as below.

f
T

(X,p) (Y, q)
X< —
g=f"

These two maps then induce homomorphisms between the fundamental groups.

fr
T

Uyt (Xap) US! (Y7 q)
~_

G

Since fugx = (f09)s = (Iy)s = Lr(xp) and g« fx = (1x)« = 1y (v,q) the two fundamental
groups are isomorphic. O

Proposition 47. 71 (X, p) x m1(Y,q) 2 m (X x Y, (p,q)).

Definition 32. X if simply connected if it is path connected and 71 (X, p) is trivial for some p
(and thus for all p).

Theorem 18. ;(S') = Z.

A simple statement, but it has lots of important corollaries. The following is one of them.

Theorem 19 (Brouwer Fixed Point). If X 22 D? (the closed unit disk), then every continuous map
f X — X hasafixed point.



Proof. We'll prove this for the case when X actually is D2, since the homeomorphic case follows easily
from it. Assume there’s no fixed point, then the following map is well-defined: draw a ray starting at
/() and going through x, then map @ to the point where this ray intersects 9D? = S*. But this map
is continuous and a retraction onto S, (did I put the following in the notes anywhere? I remember it
from hw) so it induces a surjection 71 (D?) — 71 (S1). But this is impossible since 71 (D?) = 1 and
71(S1) 22 Z. Thus there must be a fixed point somewhere on D?. O



53 COVERING SPACES

Definition 33. A covering space of B isaspace E'and acoveringmapp : £ — B. Forallx € B,
there is a neighborhood U of z such that p~!(U) is a disjoint union of homeomorphic copies of U.
Such neighborhoods are called evenly covered.

Equivalently, a covering space of is a fiber bundle with discrete fibers. Note that p must be continuous
and surjective. This is more about open sets than points. Once we get U from x, we forget about  in the
definition.

Example 12. R is a covering space of § 1 One possible covering map is

p:R— St
t +— (cos 27t, sin 27t).

Definition 34. Ifp : ¥ — Bisacoveringmap and f : X — B is continuous, then we say that f
lifts fifpo f = f.

Proposition 48. Covering maps are open.

Corollary 8. Covering maps are quotient maps.

The converse isn’t necessarily true.

We can lift homotopies (and by extension, more specific maps like paths) to a covering space. Since an
evenly covered neighborhood can contain multiple copies of an open set in the base space, though, we need
to specify the starting point in order to make the lift unique.

Theorem 20 (Homotopy Lifting Extension Property). Fix a homotopy ' : X x I — B and
suppose I'| x {0} has alift f. Then there is a unique lift F of F that extends f.

x—1 ,E
EI’F A7
1x><OJ/ p

XXI—>B

This is saying that if we fix what happens at t = 0 in the lift, then the lift is unique.



Corollary 9 (Path Lifting Lemma). A path v in B has a unique lift 7 if we fix 7(0).

E

O
v lp

I~ . B

Corollary 10 (Path Homotopy Lifting Lemma). Suppose v1, ¥ are paths in B that both start at
x. Let F be a path homotopy between them rel 2. If we specify some Z € p~!(z) and fix a lift f of
F|7x {0} then there is a unique lift of F" rel Z, that extends f.

1—! .k
alF e
1[XOJ/ p

IXI*>B




54 THE BORSUK-ULAM THEOREM

Theorem 21. Suppose X = AU B with A, B path connected and open and AN B path connected.
If i 4 and i g are the usual inclusion maps, then for all [y] € 71 (X, z), we can decompose it into

) = laa] - few],

where each [a;] lies eitherinis, (m1 (A, x)) orip, (m1 (B, z)).

Corollary 11. If n > 2, then S™ is simply connected.

Proof. (S™—{apoint}) = R" by stereographic projection. Define U to be S™ minus the north pole and
V to be S™ minus the south pole. Then U, V' = R", so

T (U), m (V) = m(R") = {e}.
Since n > 2, U NV is path connected. Then by the previous theorem, we can decompose any [+] €

71(S™) into the product of trivial equivalence classes, so [y] = [e]. Thus 71 (S™) is trivial and S™ is
subsequently simply connected. O

Corollary 12. You cannot cover S™ with n + 1 antipode-free (doesn’t contain antipodal points)
closed sets.

Proof. Suppose {Ai}zrll are closed and cover S™. Let d; : S™ — R be the distance to A, i.e.
(x) = inf —yl|.
4(w) = inf e -]
This is continuous, so

f:8" = R"
x> (di(z),...,du(z))

is also continuous. Then by Borsuk-Ulam, f(z) = f(—=x) for some z € S™. This implies d;(z) =
d;(—z) foralli. If d;(x) = d;(—x) = 0 for some 4, then , —z are both limit points of A;. Since A, is
closed, though, x, —x € A;. If none of the d;(x) are 0, then z, —x ¢ A; for 1 < ¢ < n, which forces
T, —x € Apy1. O

Theorem 22 (Borsuk-Ulam). Every continuous map f : S™ — R" satisfies f(z) = f(—=x) for
somex € S™.

Corollary 13. If Y = R™, then every continuous map f : S™ — Y satisfies f(z) = f(—x) for
somex € S™.




Proof. The situation is depicted below.

f /gN
S ——Y R"™
K

g—l

The composition g f isa continuous map S™ — R", so we can apply Borsuk-Ulam to find a pointx € S
such that (¢f)(z) = (¢f)(—z). But this is also a fixed point of f, as

f@) =97 gf(x)) = g7 (9f(~2)) = f(~2).



55 HOMOTOPY TYPE

A homeomorphism f : X — Y isa map satisfying f o f~* = 1y and f~! o f = 1x. We can loosen
this restriction to gain the notion of a homotopy equivalence.

Definition 35. A homotopy equivalence f : X — Y is a map satisfying
f ° f71 = ]-Ya
flof~1y.

We say that two spaces X and Y are homotopy equivalent or have the same homotopy type if we
can find a homotopy equivalence between them. We denote this by X ~ Y.

Proposition 49. If f,g : X — Y are homotopic with induced maps f., g« on 71 (X, p), then
m (Y, f(p)) = m (Y, 9(p))
via an isomorphism ¥ satisfying 4 f. = gu.

771(X,p) A 71-I(Y'?f(p))

is an isomorphism between 71 (Y, f(p)) and w1 (Y, g(p)). Show 7 f.. = g.. O

Proposition 50. If X ~ Y via f, then 71 (X, p) & w1 (Y, f(p)).

Proof. Suppose

f
F

(X,p) (Y, q)

<~ _—
g

where fg >~ 1y and gf ~ 1x. Then since homotopic maps have the same induced homomorphisms,
fegx = (f9)x = (Iy)x and gu fi = (9f)+« = (1x)+, so the two fundamental groups are isomorphic.
O

This shows that all we need for fundamental groups to be isomorphic is for the original spaces to be ho-
motopic. The earlier result when the original spaces were homeomorphic is then a special case of this.

When working with homotopy type, entire spaces can behave like single points. These are exactly the
spaces whose identity maps are nullhomotopic.



Definition 36. A space X is contractible if 1 x is nullhomotopic.

Proposition 51. A space is contractible if and only if it has the homotopy type of a one-point space.




56 DEFORMATION RETRACTS

Definition 37. Suppose A C X. A retraction of X onto Aisamapr : X — A that fixes A. If
i : A < X is the usual inclusion map, then this means r 04 = 1 4. We call A aretractof X.
A deformation retraction of X onto Aisamap F' : X x I — X such that

F(z,0) =z,
F(a,t) =a Vt,
F(z,1) € A.

We call A a deformation retract of X.

Suppose ¢ : A < X is the usual inclusion, then a retraction satisfies 7 05 = 1 4.

Note that F' is a homotopy rel A between 1x and i o 7, where 7 : X — A is some retraction of X
onto A. Thus an equivalent definition of a deformation retract is that there is some retraction 7 of X onto
Asuchthatior ~ 1x.

Retractions take a space and teleport it onto a subset of itself in a continuous way. Deformation re-
tractions have an added time component: they make the space flow onto a subset of itself in a continuous
way.

Deformation retracts are useful because they let you crush part of a space without changing its homo-

tOpy type.

Proposition 52. If A is a deformation retract of X, then A ~ X.

Proof. Since A is a deformation retract of X, then there’s some retract 7 : X — Asuchthatior ~ 1x.
Since 7 is a retract, it must satisfy 7 0 ¢ = 14. O

Note that this isn’t necessarily true for ordinary retracts. Take any non-contractible space X (like a
sphere) and map everything to one point (call this subset Y). Since this map is constant, it’s continuous
and, subsequently, a retraction. But since X wasn’t contractible and any map f : ¥ — X is constant,
there’s no function g : X — Y such that fg >~ 1x. Thus X and Y can’t have the same homotopy type.
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