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1 F O U N D AT I O N S

1.1 T O P O L O G Y

Definition 1. Given a setX , a topology T onX is a set of subsets ofX satisfying:

1. ∅, X ∈ T ;

2. it’s closed under arbitrary unions; and

3. it’s closed under finite intersections.

The pair (X, T ) is then a topological space.

If T ⊆ T ′, then we say T is coarser than T ′, or T ′ is finer than T .

Definition 2. A set B of subsets ofX is a basis for T onX if

1. B coversX ; and

2. if x ∈ A,B ∈ B, then there’s at least oneC ∈ B such that x ∈ C ⊆ A ∩ B.

The topology generated by a basis B is defined to be the coarsest topology containing B, which ends up
being the set of all unions of elements of B.

1.2 C AT E G O RY T H E O RY

Definition 3. A category C consists of a class of objects and, for all objects X,Y ∈ C, a set of
morphisms C(X,Y ). Morphisms have an associative composition rule

f(gh) = (fg)h,

and each object has an identity morphism: for all f : X → Y ,

f = f idX = idY f.
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Identitymorphisms are unique: Suppose idX and id′X are both identitymorphismsX → X , then idX =
idX id′X = id′X idX = id′X .

Take any category and reverse the morphisms to get an opposite/dual category Cop. More formally,
Cop has the same objects as C, but Cop(X,Y ) = C(Y,X).

Definition 4. Let f : X → Y .

• f is left invertible if there’s a g : Y → X such that gf = idX .

• f is right invertible if there’s an h : Y → X such that fh = idY .

• If both g and h exist, then g = h is the inverse of f , and f is an isomorphism betweenX
and Y .

If both left and right inverses exist, they’re the same: h = idX h = gfh = g idY = g. Inverses are
unique: if g and g′ are both inverses of f , then g = idX g = (g′f)g = g′(fg) = g′ idX = g′.

Isos are reflexive, symmetric, and associative, so they’re an equivalence relation. The equivalence classes
induced by an iso in a category are isomorphism classes of that category.

1.2.1 F U N C T O R S

Functors

Proposition 1. Functors map isos to isos.

Consequentially, functors encode invariants of iso classes, since if FX ≇ FY , thenX ≇ Y .

Example 1. Algebraic topology considers functors Top → C, where C is some algebraic category.
For instance, homology is a functorH : Top → RMod, so ifHX ≇ HY , thenX ≇ Y .

1.2.2 H O M F U N C T O R S

Definition 5. Let f : X → Y . The pushforward f∗ : C(•, X) → C(•, Y )is given by postcom-
position with f .

X Y

•

g

f

f∗(g)=fg



The pullback f∗ : C(Y, •) → C(X, •) is given by precomposition with f .

X Y

•

f

g
f∗(g)=gf

As a first step toward the YonedaLemma, the following attempts to formalize the idea that understand-
ing an object is equivalent to understanding all maps into or out of it.

Proposition 2. TFAE:

1. f : X → Y is an iso.

2. f∗ : C(•, X) → C(•, Y ) is an iso of sets for all •.

3. f∗ : C(Y, •) → C(X, •) is an iso of sets for all •.

Hom functors

1.2.3 N AT U R A L T R A N S F O R M AT I O N S

natural transformations

1.3 T H E Y O N E D A L E M M A

Motivation

Theorem 1 (Yoneda Lemma). Fix a category C.
Contravariant: For allX ∈ C and functors F : Cop → Set,

Nat(C(−, X), F ) ∼= FX.

Covariant: For allX ∈ C and functors F : C → Set,

Nat(C(X,−), F ) ∼= FX.

Note that these are isomorphisms of sets (bijections).

Proof. This is a proof of the contravariant version, as the covariant proof is analogous. Since F is a con-
travariant functor, the following diagram commutes for any f : • → X . Note that ηf is completely
determined by where η sends idX , which I’ve denoted φ; since f is arbitrary, this means the choice of φ



completely determines η as a whole. There’s a clear bijection between choices of φ and elements of FX .

C(•, X) C(X,X)

idX f = f idX

ηf = (Ff)φ φ := η idX

F• FX

η• ηX

f∗

Ff

Corollary 1. Let F be the compatible hom functor to get the following.
Contravariant:

Nat (C(−, X),C(−, Y )) ∼= C(X,Y ).

Covariant:
Nat (C(X,−),C(Y,−)) ∼= C(Y,X).

1.4 S E T T H E O RY



2 C O N S T R U C T I N G S PA C E S

We can completely determine the topology on a space by determining the continuous maps into/out of
it. We’ll use this throughout this section to define topologies on new spaces. Since the uniqueness of the
universal properties is shown in the below proposition, all that’s left to show is existence.

Lemma 1. Fix a spaceA. Then (A, T1) ∼= (A, T2) via idA ⇐⇒ T1 = T2.

Proof. Since isos are necessarily continuous, id−1
A (U2) = U2 ∈ T1 for all U2 ∈ T2. Thus T2 ⊆ T1.

Similarly T1 ⊆ T2. The backward direction is clear.

Proposition 3. For any space A, determining Top(•, A) and/or Top(A, •) uniquely determines
the topology onA.

Proof. LetA1 := (A, T1) andA2 := (A, T2), and suppose Top(A1, •) = Top(A2, •) for all •. Then
idA ∈ Top(A1, A1) = Top(A2, A1) and idA ∈ Top(A2, A2) = Top(A1, A2). Then A1

∼= A2

via the identity, so by the previous lemma, T1 = T2. It’s similar when we’ve determined Top(•, Ai)
instead.

2.1 T H E S U B S PA C E T O P O L O G Y

Proposition 4 (UP of the subspace topology). Let i : A ↪→ B be an injective map. The sub-
space topology (induced by i) onA is the unique topology onA such that for all maps f intoA, the
composition if is continuous ⇐⇒ f is continuous.

•

A Bi

f if

This topology has the form{
i−1(U) | U open inB

}
= {U ∩ iA | U open inB} .
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It’s the coarsest topology onA for which i : A ↪→ B is continuous. When i is the natural inclusion, this
all coincides with the usual definition of the subspace topology.

discrete topology makes i continuous (and is trivially the most fine top doing this), but we
can find a coarser one

It’s fine to do this even thoughAmight not be a literal subset ofB. If i : A ↪→ B is an injective map,
thenA is isomorphic as a set to its image iA ⊆ B. Using the UP, the spaceAwith the subspace topology
induced by i is homeomorphic to the space iA ⊆ B with the subspace topology induced by the natural
inclusion; so we can think ofA as being embedded inB.

Definition 6. Suppose f : A ↪→ B is a continuous injection (so A and B are already equipped
with topologies). It’s an embedding when the topology on A is the same as the subspace topology
induced by f .

2.2 T H E Q U O T I E N T T O P O L O G Y

Given a set S and surjection π : X ↠ S, there’s a bijection of sets

S
∼=−→ X/ ∼

s 7→ π−1s

If X is a topological space, we can make S inherit a topology from it via the surjection. If S had the
indiscrete topology (only∅, S are open), then π is trivially continuous. But we can find a finer topology
for S, namely

U open in S ⇐⇒ π−1U open inX.

This is the finest topology for which π is continuous.
Can think of the quotient topology as being defined on either S orX/ ∼ since they’re iso as

sets.
Have to be careful, since the union of topologies isn’t necessarily a top. If we had taken an

intersection instead, that’s fine since that’ll always be a topology itself.

Proposition 5 (UP of the quotient topology). Let π : X ↠ S be a surjective map. The quotient
topology (induced by π) on S is the unique topology on S such that for all maps f out of S, the
composition fπ is continuous ⇐⇒ f is continuous.

X

S •

fπ
π

f

One way to interpret this UP is: the continuous maps S → • are continuous mapsX → • that are
constant on the fibers of π : X ↠ S.

Define quotient map



Example 2. Consider the map

π : [0, 1] → S1

t 7→ (cos(2πt), sin(2πt)) .

π is a quotient map, so for any space •, the continuous maps S1 → • are the same as continuous
maps [0, 1] → • that factor through π. In simpler terms, the continuousmapsS1 → • are the same
as the loops in •.

Example 3. The projective space RPn is the quotient of Rn+1 − {0} by x ∼ λx for λ ∈ R.
In words, it’s the set of lines through the origin in Rn+1, and we give it a topology via the quotient
topology.

Example 4. We can identify sides of a square to get common spaces with topologies defined by the
quotient topology: the torus, the Möbius band, the Klein bottle, and the projective planeRP2.
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