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1 INTRODUCTION

Although the concept of a game is ubiquitous, rigorously defining what it means to be a game
and determining how to play it optimally are difficult tasks underpinning all of game theory.
In this paper, we will consider a significant theoretical result in the field: the guaranteed
existence of Nash equilibria in finite games. To build up to this result, we’ll need a handful
of definitions to make some intuitive ideas about a specific subset of games precise.

A game is composed of a collection of players P = {P1, P2, . . . }, where the k-th player
has a collection of strategies Sk = {1, 2, . . . } to employ during the game (in this paper,
we will almost exclusively consider 2-player games to keep the technical details simpler).
In some fashion, each player selects a strategy to employ for the rest of the game. Since a
strategy in complex games like chess is most likely impossible to actually write down, we
abstract them into just a number that indexes the set of all possible strategies. In this way,
we can view a game as a one-step process: each player selects a strategy, then the game is
carried out according to those strategies and each player receives a certain payoff based on
the rules of the game.

A pure strategy is simply an element of Sk; before the game begins, you have already
settled on a single strategy to employ. A mixed strategy infuses this with stochasticity:
it is a probability distribution on Sk. Before the game begins, you assign probabilities to
each of your possible pure strategies; then when the game starts, you randomly choose one
of them to use for the remainder of the game. If a player has n pure strategies, we can
explicitly describe their resulting space of mixed strategies as

M :=

{
p ∈ Rn

∣∣∣∣∣ ∑
i

pi = 1 and pi ≥ 0 for all i
}
.

Strictly speaking, we should be defining M explicitly in terms of its related Sk and its
number of strategies n, but this should usually be clear from context. If it’s important, I’ll
use the notation Mk to denote the mixed strategy space of the k-th player. Note that Sk

injects into M under the map sending i to the i-th standard basis element of Rn, so unless
otherwise specified, strategies are assumed to be mixed.

A non-cooperative game is one in which none of the players can make binding agree-
ments toward a common goal (although non-binding agreements with the possibility of
subterfuge would certainly be allowed). Throughout this paper, we will be assuming that
all games are non-cooperative.

We will also work under the assumption that every player’s goal is to maximize their
own expected payoff. For example, if a certain strategy gives you a payoff of 10 and your
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opponent a payoff of 9, you would prefer it over a strategy that gives you a payoff of 9 and
your opponent a payoff of 0.

We can actually define a game entirely by associating payoffs with certain strategy
combinations. Suppose we have an 2-person game, then we can define a maps

uk : S1 × S2 → R

that map pairs of pure strategies to the payoff that player k receives if both players use these
respective pure strategies. For examples, the value u2(3, 5) is the payoff player 2 receives
if player 1 uses the pure strategy 3 and player 2 uses the pure strategy 5. We can extend
these payoff maps to work with mixed strategies as well by having them return the expected
payoff instead. Overloading notation, we can define

uk(p, q) :=
∑
i,j

P (player 1 chooses i and player 2 chooses j)uk(i, j).

Our assumption that the game is non-cooperative essentially means that strategy selection
is independent among the players, so this reduces nicely to the following:

uk(p, q) =
∑
i,j

P (player 1 chooses i)P (player 2 chooses j)uk(i, j)

=
∑
i,j

piqj uk(i, j). (1)

For 2-player games, we can express these ideas more concisely using matrices. Define two
matrices A and B by

Aij := u1(i, j) and Bij := u2(i, j),

so A is all the payoffs that player 1 could receive and B is all the payoffs that player 2 could
receive. Then our game is completely defined by A and B, and we can express the expected
payoffs of the pair of mixed strategies (p, q) by

u1(p, q) = p ·Aq and u2(p, q) = p ·Bq. (2)

Note that these both match up with (1).

1.1 NASH EQUILIBRIA

Suppose you’re playing a game and all your opponents’ strategies are fixed, then you should
choose a strategy whose expected payoff is greater than or equal to that of any other possible
strategy. In other words, you gain nothing by unilaterally changing your strategy. If none
of the players in this game can gain any additional payoff by unilaterally changing their
respective strategy, then the current arrangement of strategies is a Nash equilibrium. For
2-player games, we can write this in terms our matrices A and B using (2).

Definition 1. For a 2-player game, the pair (p, q) of (mixed) strategies is a Nash equi-
librium if

p′ ·Aq ≤ p ·Aq for all other p′

and
p ·Bq′ ≤ p ·Bq for all other q′.
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Nash equilibria, if they exist, need not be unique. To see this, consider the 2-player game
given by the following payoff matrices

A =

(
10 0
0 20

)
and B =

(
10 0
0 20

)
.

For this game, the pairs of pure strategies (1, 1) and (2, 2) are both Nash equilibria. Thus
a Nash equilibrium is more like a local optimum rather than a global one.

Additionally, to see why we care about mixed strategies in the first place, we can consider
the classic game Rock, Paper, Scissors. Suppose player 2 has chosen the “rock” strategy, the
only strategy that player 1 could possibly pick to form a Nash equilibrium is the “paper”
strategy, as the other two strategies underperform it. But then if player 1 has fixed the
“paper” strategy, player 2 could only possibly pick the “scissors” strategy to form a Nash
equilibrium, which wasn’t what they started with! By similar logic for the other cases, we
see that there is no possible Nash equilibrium of pure strategies for this game.

However, if mixed strategies are allowed, then it turns out that at least one Nash equi-
librium exists for any game with a finite number of players, each with a finite number of
pure strategies. This is exactly the statement of Nash’s existence theorem.

Theorem 1 (Nash’s Existence Theorem). Suppose a game has a finite number of players,
each with a finite number of pure strategies. If mixed strategies are allowed, then this game
has a (potentially non-unique) Nash equilibrium.

We will not prove this version of the theorem; instead, we will prove it for 2-player
games. All the same concepts are in play, and the high-level proof strategy is in fact the
same; however, since we can use matrices to describe expected payoff for 2-player games,
this special case of the theorem will be much easier to prove rigorously without having to
develop and use unwieldy notation.

2 BROUWER’S FIXED POINT THEOREM

Underlying Nash’s existence theorem is the famous Brouwer fixed point theorem. We will
state and prove this theorem now, then describe it’s connection with Nash’s theorem. We
assume several topological facts for this proof, namely that passing to the k-th homology
group is a covariant functor, the homology of the n-sphere Sn is

Hk(S
n) =

{
Z k = 0, n

0 otherwise,

the homology of a point is

Hk(pt) =
{
Z k = 0,

0 otherwise,

and the fact that homology is homotopy invariant. This last fact means that any contractible
space has the same homology as a point.
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Lemma 1. There is no retraction r : Dn → ∂Dn = Sn−1 for n ≥ 1.

Proof. Suppose there is such a retraction r, then we have the following commutative dia-
gram, where i is the natural inclusion.

Sn−1 Dn Sn−1i

id

r

Since Dn is contractible and n ≥ 1, applying the Hn−1 functor gives the following commu-
tative diagram.

Z 0 Zi∗

id

r∗

But the identity map cannot factor through 0, so by contradiction, r cannot exist.

Theorem 2 (Brouwer’s Fixed Point Theorem). Suppose X ∼= Dn for n ≥ 1, then any
continuous map f : X → X has a fixed point.

Proof. We will first treat the case when X = Dn for some n ≥ 1. Suppose that there is
some continuous map f : Dn → Dn that doesn’t have any fixed points. Then we can define
a retraction r : Dn → ∂Dn as follows: take the ray starting at f(x) and passing through x,
then r(x) is the point at which this ray intersects ∂Dn. But by lemma Lemma 1, no such
retraction can exist. Thus by contradiction, f cannot have a fixed point.

Now we will extend this result to the case X ∼= Dn via some isomorphism ϕ. Suppose
f : X → X is continuous, then consider the following composition of maps.

Dn X X Dnϕ−1 f ϕ

By our previous work, this composition has a fixed point, i.e. there is some x ∈ Dn such
that (ϕ−1fϕ)(x) = x. But applying ϕ to both sides gives (fϕ)(x) = ϕ(x), so ϕ(x) is a fixed
point of f . Thus any space homeomorphic to Dn has a fixed point.

2.1 CONNECTION WITH MIXED STRATEGIES

We’ve now stated and proven the fixed point theorem that will be central to our proof of
Nash’s existence theorem, but it is presently unclear how to actually use it to study strategies
in a 2-person game. As a first step towards this, we will see how we can apply Brouwer’s
fixed point theorem to some endomorphism on the space of a player’s mixed strategies. In
the next section, we will explicitly define an endomorphism whose fixed point gives a Nash
equilibrium.

To begin, recall that the space of all mixed strategies for a player with pure strategies
1, . . . , n is

M =

{
p ∈ Rn

∣∣ ∑
i

pi = 1 and pi ≥ 0 for all i
}
.

From a geometric perspective, this is exactly the standard (n − 1)-simplex ∆n−1, so every
mixed strategy can be thought of as a point on a standard simplex. An important conse-
quence of this is that we can apply Brouwer’s fixed point theorem to any endomorphism on
M. In fact, we can actually apply it to any finite product of mixed strategy spaces.
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Lemma 2. Any continuous map
∏ℓ

k=1 Mk →
∏ℓ

k=1 Mk has a fixed point.

Proof. Since each Mk is a standard simplex, the proof of Corollary 22 in [1] shows that∏ℓ
k=1 Mk is itself homeomorphic to a standard simplex. It is well known that ∆n ∼= Dn for

all n, so we can simply apply Brouwer’s fixed point theorem.

3 NASH’S EXISTENCE THEOREM FOR 2-PLAYER GAMES

We now have all the necessary machinery to prove Nash’s existence theorem for 2-player
games. The idea is quite straightforward:

• First, we define an endomorphism on M1 ×M2 that aims to simultaneously improve
both players’ strategies (assuming the other stays fixed).

• We then apply Lemma 2 to obtain a pair of maximally optimized strategies.

• We then check that this pair of strategies forms a Nash equilibrium.

Before beginning the proof, it should be clear how to expand this general concept to the
case of any finite number of players. As should become obvious in the proof of the 2-player
case, the only thing that really changes in the argument is how unwieldy the notation is.

Theorem 3 (Nash’s Existence Theorem for 2-Player Games). Any finite 2-player game has
a Nash equilibrium if mixed strategies are allowed.

Proof. Suppose player 1 has pure strategies {1, . . . ,m} and player 2 has pure strategies
{1, . . . , n}. We will first determine a way to improve player 1’s strategy while keeping
player 2’s strategy fixed. Consider the function

ci(p, q) := max {i ·Aq − p ·Aq, 0} .

This is player 1’s expected gain (if any) of using the pure strategy i over the strategy p.
How does this help us improve p? If a more optimal strategy weights i more heavily than p
does, we expect there to be some gain from using i all the time. To actually use this value
to update p, we can simply add it to pi and then normalize to ensure that the output is still
in M1 = ∆m−1. Define

fi(p, q) :=
pi + ci(p, q)

1 +
∑

k ck(p, q)
,

then the map f := (f1, . . . fm) is our desired update map. Note that f : M → M:∑
i

fi(p, q) =

∑
i pi +

∑
i ci(p, q)

1 +
∑

k ck(p, q)
=

1 +
∑

i ci(p, q)

1 +
∑

k ck(p, q)
= 1,

so f(p, q) ∈ ∆m−1 = M1. Similarly, we can define player 2’s expected gain (if any) of using
the pure strategy j over the strategy q by

di(p, q) := max {p ·Bj − p ·Bq, 0} .

Our update map for player 2’s strategy is then g := (g1, . . . , gn), where

gi(p, q) :=
qi + di(p, q)

1 +
∑

k dk(p, q)
.
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Now consider the map M1 × M2 → M1 × M2 given by (p, q) 7→ (f(p), g(q)). All the
operations composing f and g are continuous, so this map is itself continuous. Then by
Lemma 2, this map has a fixed point (p∗, q∗). We claim that (p∗, q∗) is a Nash equilibrium.
Note that since p∗ is in particular a fixed point of f ,

ci(p
∗, q∗) = 0

necessarily for all i. By the definition of ci, this means

i ·Aq∗ ≤ p∗ ·Aq∗

for all i. Then for all p 6= p∗,

p ·Aq∗ =
∑
i

pi(i ·Aq∗) ≤
∑
i

pi(p
∗ ·Aq∗) =

(∑
i

pi

)
(p∗ ·Aq∗) = p∗ ·Aq∗.

We can similarly derive
p∗ ·Bq ≤ p∗ ·Bq∗

for any q 6= q∗, so the pair (p∗, q∗) is a Nash equilibrium.
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