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1 INTRODUCTION

In any introductory course on multivariable calculus, one will encounter standard theorems
like Green’s and Stokes’ Theorems. Although the notation for each of these theorems is
somewhat intimidating upon first glance, the general concept is the same in both: just as
in the fundamental theorem of calculus, to find out how small changes in a function build
up over an area, it’s actually enough to analyze how the function acts on the boundary of
that area.

In the 1-dimensional case (the fundamental theorem of calculus), this means f(b) — f(a)
can be found by integrating df over [a,b]. Note here that {—a, b} is the oriented boundary
of the interval [a, b], so we can rewrite this theorem as

Joa= L
[a,b] Ola,b]

The situation in higher dimensions is similar, except we have to work with different notions of
the derivative that take into account how much f curls around each point. In 2 dimensions,
this is known as Green’s Theorem, and in 3 dimensions, it’s the classical Stokes’ Theorem.
In fact, this relationship generalizes to arbitrary orientable manifolds. In the following
sections, we will build up the theory of manifolds, tensors, and differential forms necessary
to rigorously understand the fully generalized Stokes’ Theorem.

2 MANIFOLDS

To generalize Stokes’ Theorem to manifolds, we’ll first have to define what a manifold is.
Informally speaking, a manifold is any space that looks Euclidean if you zoom in far enough,
with a few extra technical conditions that make them nicer to work with.

Definition 1. A topological space M is an n-dimensional manifold if it is second countable,
Hausdorff, and locally homeomorphic to R™. It is a manifold with boundary if some points
have neighborhoods homeomorphic to the n-dimensional upper half plane H" := R"~! x R>.

We can then represent a manifold M as a collection of charts {(U;, ¢;)}, where each U;
is an open subset of M and each ¢; is a homeomorphism from U to an open subset of either
R™ or H™.

Since we want to generalize the notion of the derivative, we’ll also need to define when
maps between manifolds are smooth. We say a map f : U — V between open subsets of R™
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and R™ is smooth if each of the component functions of f is infinitely differentiable. To
extend this to manifolds, suppose (U, ¢) C M and (V,4) C N are charts of manifolds. Then
we say that a map g : U — V is smooth if 1 o0 g o ¢! is smooth in the Euclidean sense.

One final condition we need to ensure that our maps are well-defined is for the smooth
structures induced by overlapping maps to be compatible. We say that two charts (U, ¢) and
(V, 1)) are smoothly compatible if either U N V = @ or ypod~ ! : p(U N V) = (U N V)
is a diffeomorphism.

3 TENSORS

Although it might seem like a serious digression from the geometry, we’ll need to build up
the idea of tensors and tensor products: in the next section, we’ll use tensor products to
define the wedge product of differential forms.

Suppose we have a k-multilinear map f : V x --- x V — W; we call f a k-tensor on
V. If f had been linear, we would be able to analyze it easily using any of the theorems of
linear algebra. Luckily for us, it is possible to find a space in which f actually is linear —
this space is called the tensor product V®---® V. We give a slightly more general definition
below.

Definition 2. The tensor product of Vy X --- x Vi, is a vector space V1 ® - -+ ® Vi, with a
k-multilinear map ® such that the following diagram commutes for all k-multilinear maps
f and vector spaces W'.

£l
Ve -V, — W

o 7

V1><'~'><Vk

As it turns out, tensor products are unique up to isomorphism, and thus it makes sense
to call V1 ® --- ® Vi the tensor product of Vi x --- x V. There is also no ambiguity in our
notation V; ® --- ® Vi, as the taking the tensor product is an associative operation.

Theorem 1. The tensor product is unique up to (unique) isomorphism. In particular, for
all vector spaces V and W, there is a tensor product V@ W, and

VW is also a tensor product — ®T /
&

VxW

Furthermore, for any vector spaces A, B,C, we have (AQ B)@ C 2 A® (B® C).

Proof. We will not prove existence here, as the construction is complicated. Instead, see
Theorem 8 in these notes.

Uniqueness: Suppose V®W is also a tensor product, then the universal property gives
the following commutative diagram.


https://bhoagsbargrill.com/latex/notes/module_theory/module_theory.pdf
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But this means we can form the following commutative diagram.

Vow S vew

®T%

VxW

We know from the universal property that the extension of ® must be unique, and id is
certainly an extension, so ¥¢ = id. Similarly, we can show ¢¢ = id. Thus ¢ and ) are
isomorphisms, i.e. V@ W 2 VaW.

Conversely, suppose the diagram from the statement of the theorem commutes, then the
following diagram must also commute for any vector space X and bilinear f: V x W — X.

The composition along the top is then our desired linear map satisfying the universal prop-
erty of the tensor product, so V®W is a tensor product.
Associativity: Consider the map

f:Ax(B®C)—= (A B)®C
(a,b®¢c)—~ (a®b)® c.
This is bilinear since it’s the same as (a,b ® ¢) — ¢4(b, ¢), where ¢, is the map from the

universal property extending the bilinear map f, : (b,¢) — (a ® b) ® ¢. But then by the
universal property, the following diagram commutes.

We can similarly construct a map ¢ : (A® B)® C - A® (B ® (), and these maps are
mutually inverse. Thus (A® B)@ C = A® (B® C).
O

Note that we can induct on this result, so this applies to any product of k vector spaces.
The existence and uniqueness of the tensor product allow us to perform many useful algebraic
constructions, but for our purposes, we will need only one. Consider two multilinear maps

vav.,  wilw,

where both pairs (V, W) and (V’,W’) of vector spaces have the same base field. Then we
can uniquely extend these two linear maps to a single linear map on V ® W.

Proposition 1. Given multilinear maps ¢ : V. — V' and p : W — W', there is a unique
linear map V@ W — V' @ W' mapping

0@ w s Bv) @ Y(w).



4 Braden Hoagland

Proof. Consider the multilinear map V x W — V @ W given by (v,w) — ¢(v) ® ¢¥(w).
By the universal property of the tensor product, this extends uniquely to a map v ® w —

$(v) @ P(w). O

This construction reduces quite nicely when working with tensors. Suppose S is a k-
tensor on V and T is an /-tensor on V. Then since R ®g R =2 R with r ® s = rs, we can
apply the previous proposition to get a single linear map

k+£

®V%R

1=1

V1 &+ &Q Vgrp S(’l)l,...7’l)k) T(Uk+1,...7’l)k+[).

Pre-composing this with the tensor inclusion ® then gives a multilinear map

k+¢
SeT:[[Vv-R
=1
(vh' . avk-‘rf) — S(vla v ,'Uk) T(vk-‘rla B avk-‘rf)'

Thus given a k-tensor and an ¢-tensor on the same vector space, we can produce a (k + ¢)-
tensor through this process. In the next section, we will use this product of tensors to define
the wedge product of differential forms, which will be the last bit of theoretical foundation
necessary to state and prove the generalized Stokes’ Theorem.

4 DIFFERENTIAL FORMS

A tensor is alternating if swapping any two inputs negates the output. A differential form
is then a way of assigning an alternating tensor to each point on a manifold. To start, we’ll
need a way of making any tensor alternating.

Proposition 2. Given a k-tensor T, the tensor
1 .
Al(T) = o Z (sign )T (Vo(1), -+ Vo (k))
€Sk
is alternating.

Definition 3. A differential k-form on a manifold M associates to each p € M an
alternating k-tensor

k
wp : @TP(M) - R
i=1
Suppose we’re working on a chart U C M with coordinates (z1,...,,), then the dif-
ferentials dz1,...,dx, are all 1-forms. In fact, we can combine these to form a basis for

all differential forms on U up to degree n. This combination process is formalized by the
wedge product.

Definition 4. Suppose S is a k-tensor and T is an £-tensor, then their wedge product is
the (k + £)-tensor
(k+0)!

SAT =

Alt(S ® T).
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The wedge product satisfies several basic properties that are useful in computations. We
list them here without proof:

o Associativity: (RAS)AT =RA(SAT);

e Anticommutativity: S AT = —T A S, which implies T AT = 0;
o Homogeneity: (AS)AT =S A(AT) =A(SAT); and

o Distributivity: (R+S)AT =(RAT)+ (SAT).

As promised, the wedge product allows us to construct any differential form on a local
coordinate chart.

Theorem 2. On a chart with coordinates (x1,...,x,), any k-form w (for k < n) can be
written uniquely as
w = Z Wiy, ik dgjil A A dﬂfi,m
11 <t <---<ip

where each w;, .. i, is a scalar function.

k

It is common to see statements like the one above written in multi-index notation, in

which case it reads
w= g wrdzy.
I

Additionally, we will usually suppress the A when working with dx;, since it should be
clear from context that we are taking their wedge product.

To differentiate forms, we need a generalization of the derivative called the exterior
derivative.

Definition 5. Suppose we have a k-form w =", wr dx, then its exterior derivative is
the k 4+ 1-form

dw = Zdw; ANdxy,
I

where
dwr = ZZ: %dwi
is the usual differential of a scalar function.
The exterior derivative has the following useful properties:
o d(w1 4+ ws) = dwy + dws;
e if wy is a k-form, then d(w; A wy) = dwy Aws + (—1)Fw; A dws; and
e d’>=0.

Finally, we need a notion of integration of forms. To do this, we’ll need to define
partitions of unity.

Definition 6. A partition of wunity on M is a collection {¢;}, of continuous maps
¢; : M — R such that

1. ¢; >0 for all i;



6 Braden Hoagland

2. every p € M has a neighborhood on which all but finitely many of the ¢; are 0;
3. Each ¢; is 0 except on some closed set contained in one of the charts U of M; and

4. For allp € M, we have ), ¢;i(p) = 1.

Given a partition of unity of M, we can define what it means to integrate a differential
form w over M.

Definition 7. Suppose M is a manifold with charts (U;, &;), then take a partition of unity
{i}i. We define the intergral of w over M as

/Mw - 21: /M v

Importantly, this integral does not depend on the choice of charts or the choice of the
partition of unity.

5 STOKES’ THEOREM

With the theory of manifolds and differential forms built up, we can finally state and prove
the generalized Stokes’ Theorem.

Theorem 3 (Stokes’ Theorem). Let M be an oriented n-manifold, and let w be an (n—1)-
form with compact support on M. Then

/ dw:/ w.
M oM

Proof. We will first prove the theorem when M = H", the n-dimensional upper half-plane.
Then we will extend the result to when M is a general manifold (potentially with boundary).

Since w has compact support on M, we can find R > 0 such that A := [-R, R] x -+ x
[-R, R] x [0, R] contains supp(w) (strictly so in the first n — 1 dimensions). Additionally,
since w is an (n — 1)-form, we can write w locally on any patch U C M with coordinates
(x1,...,2n) as

n
w = Zwi dxy---dx;---dx,
i=1
for some maps {w; : U — R}, . Its exterior derivative is then

dw =" dw; dwy -+~ dw; -~ d,
i=1

al'j

ij=1
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If i # j, then there are two copies of dz; in the expression above, so it becomes 0. Thus the
only nonzero terms in the sum are those where 7 = j. This then becomes

w- —
Y dx; dxy - -dx; - - - dxy,
L

|
QD

@,
Il
—

(—1)(i*1)%dx1 o dmy,.
z;

Il

I
—

K2

Since w is identically 0 on H"™ — A, we know dw = 0 on H" — A. Thus integrating dw over
H" gives

/ dw = Z(—l)(iil) O dzy---dzy,

A O0x;

i=1
n R (R R
, Ow;
:Z(_l)(t—l)/ / / it dzy - dx,,.
im1 0 J-R —r Ox;

We can simplify this expression further, though. Since the first n — 1 dimensions of supp(w)
are strictly contained in A, we have w;(x) = 0 whenever any coordinate of 2 has absolute
value at least R. Thus

R R B s R /R R -
/ / / dx1~~~dxn:/ / / [wz] ;_Rdml"'dzn—l
o J-R _gr Ox; o J-Rr -R i

R /R R
/ / / 0dey - de,

0o J-R -R
0.

We can then simplify [, dw to

R R .
dw = (—1)("~V / / [wn(x)]i"':o dzry - drp_1
H~ -R -R "

R R
:(_1)n/ / wn(xl,...,xn_l,O) dl‘l'~'d$n_1.
-R -R

This is the most we can simplify, so we can begin calculating f opn w to see if it matches

this. We have
n —~
/ w:Z/ wld$1d$ld$n
OHn =1 JA N o

Now on OH", the n-th coordinate x,, is identically 0, so dz,, = 0. Thus the only nonzero
term in the above sum is when ¢ = n. This then becomes

= / W (21,000, 2n-1,0) day - dwp_y
A N oHr

R R
:(—1)"/ / wn(T1, .oy Tn—1,0) dxy - -day_q

-R -R

:/ dw.
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Thus Stokes” Theorem holds in the special case M = H". Now suppose M = R". This case
is much simpler, as we’ve already done most of the work. Recall the argument used in the
(%) computation. We used a covering [—R, R] X --- X [-R, R] x [0, R] then, but since we're
working in R™ now, we can use a covering of the form [-R, R] X --- x [-R, R]. Then the
argument in () applies to all 7, so

n (i-1) R R O
dw = -1~ / / “dry---dr, = 0.
R™ ;( -R _g Ox; '

And since R™ has no boundary, | ornw =0 = fRn dw. These past two special cases show
that the theorem holds for any neighborhood of any manifold. Now we must extend these
results to the entirety of any manifold.

Since supp(w) is compact, we can find a finite open cover {(U;, ¢;)}, of it. Now take a
partition of unity {1/;},. Then since we know the theorem holds on any neighborhood of M,

we have
/8M v ZZ: oM Vi
-3 | i)

=5 [ @inw o).

By the linearity of d and using the fact that ), 1; = 1, this becomes

() (20) -
:/MO/\w+/de
- [

Thus Stokes” Theorem holds for any orientable manifold. O
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