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1 INTRODUCTION

Mathematical knots are idealized notions of real-life knots: instead of a thick piece of rope
of finite length, we use an infinitesimally thin line with ends fused together. Below are a
few examples; the first two are well known knots called the unknot and the trefoil knot.

Looking at examples, it is visually clear that some knots are more complicated than
other knots. For instance, the unknot has no twists in it while the others do. Formulating
this mathematically is far from trivial, however: every knot is homeomorphic to every other
knot, so any distinguishing invariant can only be formulated with a bit of creativity.

The aim of this paper is to develop such an invariant: the knot group. We first give
a detailed argument for the earlier claim that any two knots are homeomorphic. We then
develop some theory regarding the fundamental group and use it to propose a useful knot
invariant called the knot group. We conclude by deriving a method to compute it, giving
the Wirtinger presentation of the knot group, and we explore several examples to show how
useful this presentation is in quickly distinguishing knots.

2 BACKGROUND

A knot K is an embedding of the circle S1 in R3, i.e. the image of a continuous injection
f : S1 → R3. As in many branches of mathematics, we want to find some invariant that
allows us tell different knots apart. To motivate the particular invariant discussed in this
paper (the knot group), we can consider what goes wrong when we analyze a knot without
paying attention to its ambient space R3.
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We claim that any knot K is homeomorphic to S1. To see this, we will need several
lemmas.

Lemma 1. Any closed subset of a compact space is compact.

Proof. Suppose A is a closed subset of a compact set X, and suppose U is an open cover of
A. Since A is closed, U ∪ (X − A) is an open cover of X. Since X is compact, this cover
has a finite subcover {U1, . . . , Un, X −A}, where each Ui is in U . But then {U1, . . . , Un} is
necessarily a finite subcover of U , so A is compact.

Lemma 2. Any compact subset of a Hausdorff space is closed.

Proof. Suppose A is a compact subset of a Hausdorff space X. We will show that X −A is
open. Fix x ∈ X − A, then for all a ∈ A, there are disjoint neighborhoods Ua of a and Va

of x since X is Hausdorff.
Note that {Ua}a∈A is an open cover of A, so since A is compact, it has a finite subcover

{Uai}
n
i=1. Then

⋂n
i=1 Vai is an open neighborhood of x (it’s open since the intersection is

finite) that does not intersect A. Since x was arbitrary, X −A is open, so A is closed.

Lemma 3. A continuous map is closed if it sends closed sets to closed sets. A bijective
closed map is a homeomorphism.

Proof. Suppose f : X → Y is a closed bijection, then we can clearly define an inverse
f−1 : Y → X. To show that it is continuous, note that for U closed in X, (f−1)−1(U) = f(U)
is closed in Y since f is a closed map.

Lemma 4. Suppose f : X → Y is a continuous bijection, X is compact, and Y is Hausdorff.
Then f is a homeomorphism.

Proof. Let A be a closed set of X, then since X is compact, A is also compact by Lemma 1.
Since continuous maps preserve compactness, f(A) is a compact subset of Y . Since Y is
Hausdorff, it is closed by Lemma 2. Thus f is a closed map. Then by Lemma 3, f is a
homeomorphism.

Theorem 1. Every knot is homeomorphic to S1.

Proof. Suppose K is the image of continuous injection f : S1 → R3. Note that K is
Hausdorff with the subspace topology inherited from R3, and also note that f necessarily
maps onto K. Since S1 is compact, S1 ∼= K by Lemma 4.

The main philosophical consequence of this theorem is that, topologically speaking, any
two knots are the same. Thus if we want a topological invariant for a knot, it will have to
somehow include the ambient space R3. Perhaps the most straightforward way of doing this
is, given a knot K, analyzing R3 −K instead of K.

2.1 KNOT GROUPS

To determine how complex K is, we will study the space of homotopy classes of loops of
R3 −K, i.e. the fundamental group of R3 −K. We’ll need a few basic definitions before we
do this.

Suppose f, g : X → Y are two continuous maps, then a homotopy between f to g is a
continuous map H : X × I → Y , where I = [0, 1], such that H(·, 0) = f and H(·, 1). If a
homotopy exists between f and g, we say they are homotopic and denote this by f ' g.
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We can extend homotopies to work with loops instead of general maps. We define a
loop in X to be a continuous map S1 → X. Suppose we denote a special basepoint 0 ∈ S1,
then we say that a loop f is based at 0 if f(0). We can “multiply” two loops f and g (both
based at the same point) by concatenating them.

If we have two loops f and g based at the same point, then a homotopy of loops
between them is a standard homotopy H with the added restriction that H(0, t) = f(0) =
g(0) for all t ∈ I.

Then given a space X, we can partition the set of loops based at x ∈ X with the
equivalence relation given by f ' g ⇐⇒ f and g are loop homotopic. From now on, we
will use the notation [f ] to denote the equivalence class of f . We can finally define the
fundamental group.

Definition 1. Suppose X is a topological space. Then the fundamental group π1(X,x)
of X based at x is the set {

[f ]
∣∣∣ f is a loop based at x

}
equipped with the group operation of path multiplication.

The fundamental group is a useful tool for distinguishing topological spaces since it is a
topological invariant. But one annoying part of the definition is its reliance on a basepoint.
Luckily, we don’t have to worry about this when working with knots.

Proposition 1. Any two fundamental groups in a path connected space are isomorphic.

Proof. Consider π1(X,x0) and π1(X,x1). Suppose X is path connected, then there is a
path h from x0 to x1. Then the map

π1(X,x1) → π1(X,x0)

[f ] 7→ [hfh].

is a group homomorphism with inverse [f ] 7→ [hfh]. Thus it is also an isomorphism.

By Theorem 4 in [2], the knot complement R3−K is path connected. Thus we can define
the knot group of K to be (up to isomorphism) the fundamental group π1(R3 −K,x) for
any x ∈ R3 −K. Since the basepoint is inconsequential, we will drop it from our notation
from now on.

As a final note, we can treat π1 as a covariant functor Top∗ → Grp, which can be checked
routinely. This fact will significantly clean up a few later proofs. Note that although the
next theorem assumes path connectedness, this assumption is unnecessary and only used to
clean up notation.

Theorem 2. π1 is a covariant functor mapping X → π1(X,x0) and f : X → Y to the
group homomorphism

f∗ : π1(X) → π1(Y )

[α] 7→ [fα].

This functor plays nicely with homotopic maps, too: it sends them to the same induced
homomorphism, which we present without proof due to the technical machinery needed to
build up to this result.

Proposition 2. If f ' g, the f∗ = g∗.
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Although it has a sound theoretical backing, knot groups would ultimately be useless
if we could not compute them. Luckily, their computation is straightforward, allowing for
the calculation of knot groups of complicated knots with relative ease. To facilitate this
computation, we will need to take a brief detour to discuss deformation retractions.

2.2 DEFORMATION RETRACTIONS

Suppose A ⊂ X. A retraction of X onto A is a continous map r : X → A that fixes
A. Equivalently, r ◦ i = 1A, where i : A ↪→ X is the natural inclusion. A deformation
retraction of X onto A is then a homotopy between 1X and a retraction r : X → A that
fixes A. To be precise, a deformation retraction is a map F : X × I → X such that

F (·, 0) = idX ,

F (·, t) = idA ∀t,
F (x, 1) ∈ A ∀x ∈ X.

To be precise, this is a homotopy between 1X and i◦r. Thus one can think of deformation
retractions as continuously “shrinking” one space onto a smaller space through time. The
most important property of deformation retractions for our purposes is that they preserve
fundamental groups.

Theorem 3. Suppose X is path connected and deformation retracts onto A, then π1(X) ∼=
π1(A).

Proof. First note that r := F (·, 1) is a retraction onto A. Then since it’s continuous,
r(X) = A is also path connected, and so it makes sense to refer to both π1(X) and π1(A)
without basepoints. Now we can apply the π1 functor to the following commutative diagram.

A X ⇝ π1(A) π1(X)
i

r

i∗

r∗

Note that by functoriality, the second diagram shows r∗i∗ = (ri)∗ = (idA)∗ = idπ1(A). To
show the other half of the isomorphism, note that the deformation retraction shows i ◦ r '
idX . Then by Proposition 2, i∗r∗ = (ir)∗ = (idX)∗ = idπ1(X). Thus π1(A) ∼= π1(X).

3 THE WIRTINGER PRESENTATION

The main idea of the Wirtinger presentation is to find a deformation retraction of R3−K in
which it’s easier to compute the fundamental group. Then by Theorem 3, this is the same
as π1(R3 −K).

Suppose we lie our knot K on a flat surface, then we can examine each crossing indi-
vidually. Suppose we’ve oriented a crossing as below, then we can take rectangular strips
Ri, Rj , and Rk and lie them over each of the three distinct segments to form tunnels, fusing
their edges into the surface. We also fuse together each of the tunnels at the four designated
points.
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Now take a square Sℓ and place it on top of the crossing, fusing it together with the
tunnels as shown. With a bit of thought, one can see that this is a deformation retract of
R3 −K, and thus it must have the same fundamental group.

It is straightforward to find this space’s fundamental group. For a single crossing, remove
Sℓ, then there are three distinct classes of loops, each going around a different tunnel. At
this point, the fundamental group is free with a generator xi for each Ri.

Now orient the segments as below; a bit of thought shows that this orientation can be
carried on throughout the rest of the crossings in a compatible way. Then for any loop going
around a rectangular strip, we can orient it via the right hand rule.
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Now add in Sℓ again. Based on the orientation we just decided on, Sℓ is a 2-cell with
the following orientations on each edge.

By Van Kampen’s Theorem, this adds in relations of the form xixjx
−1
i x−1

k = 1 to the
fundamental group. Thus the knot group of any knot has a generator xi for each distinct
segment and a relation xixjx

−1
i = xk for each crossing. This presentation of the group is

the Wirtinger presentation, and we can see its computational benefits firsthand through
the following two examples.

Example 1 (The unknot). Suppose K is an unknot, then it has one distinct segment and
no crossings. This means its knot group has one generator and no added relations, i.e.
π1(R3 −K) ∼= Z.
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Example 2 (The trefoil knot). Suppose K is a trefoil knot, then it has three distinct
segments and three crossings.

Thus its knot group is

π1(R3 −K) ∼= 〈x1, x2, x3 | x1x2x
−1
1 = x3, x2x3x

−1
2 = x1, x3x1x

−1
3 = x2〉.

Note that we can express x3 in terms of x1 and x3. Doing so, all relations simplify to the
same one, giving

〈x1, x2 | x1x2x1 = x2x1x2〉.

From here we can make two different notational simplications, each yielding a common
presentation of the trefoil knot’s knot group. If we let a = x1 and b = x2, then this becomes

〈a, b | aba = bab〉.

This isn’t a particularly substantive change, just a cosmetic one. Alternatively, if we let
a = x1x2x1 and b = x2x1, then a3 = x1x2x1x2x1x2 = (x2x1x2)(x1x2x1) = b3. Thus an
equivalent presentation of the knot group is

〈a, b | a2 = b3〉.

In fact, we can generalize this argument in a straightforward way to apply to (p, q)-torus
knots, where p and q are relatively prime. In this general case, the knot group ends up being

〈a, b | ap = bq〉.
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