
Homological Regularization for Autoencoders
Braden Hoagland Jerry Liu Michael Montelli

Abstract—Autoencoders, common generative models that learn
latent representations of training data, suffer from irregular
latent spaces that make generating new data difficult. Current
methods for regularizing the latent space resolve this issue, but
also reduce the quality of the learned embeddings by introducing
stochasticity. To address this issue without affecting the autoen-
coder’s embedding quality, we introduce a regularization penalty
based on the 0-dimensional persistent homology of the learned
embeddings. We show that autoencoders with this topological
regularization exhibit similar generative ability to that of existing
methods while maintaining deterministic learned embeddings.

I. INTRODUCTION

Generative models are a means of producing data that is
qualitatively similar to some collection of training data, usually
by sampling noise and transforming it. More formally, if we
have a collection of n-dimensional points X̂ , we then can treat
this as a discrete, unbiased sample of a manifold X embedded
in Rn. The goal of a generative model is then to create unseen
points of X using only X̂ as a reference.

A common strategy is to suppose that X can be reasonably
compressed into a simpler, lower-dimensional latent space L.
If we can learn a map L → X that reconstructs X̂ from
points in L, and if L is a simple enough space, then it should
be straightforward to sample points randomly from L and pass
them through our reconstruction map to create unseen points
in X .

Of course, since X is in general unknown and incapable
of being losslessly embedded into a lower-dimensional space,
this process can only be completed approximately. One such
approximation is the autoencoder, which learns representations
in L of points in X̂ and then uses these representations to learn
a reconstruction map L → X . We will detail how autoencoders
are structured and trained in Section I-C after introducing the
general machine learning and topological concepts utilized in
this paper.

A. Deep Neural Network Training

Neural networks are powerful function approximators that
are frequently used in the creation of generative models.
Suppose we have data X̂ and wish to approximate a function
f : X → Y . If we define a differentiable map ∆ : Y ×Y → R
that is minimized if and only if both inputs are identical, then
we can attempt to fit a neural network f̂ to f by minimizing

Ex∈X

[
∆(f̂(x), f(x))

]
≈ 1

|X̂|

∑
x∈X̂

∆(f̂(x), f(x)). (1)

To perform this minimization, we can calculate the gradient
of this expression with respect to the parameters composing
the neural network, then take small steps in the direction of
the negative gradient. This process, stochastic gradient descent,

converges almost surely to a local minimum under some mod-
erate assumptions [6]. Although this minimum theoretically
need not be the global minimum, various heuristics make
stochastic gradient descent viable for finding nearly optimal
solutions [4].

With large datasets, it might be infeasible to compute (1)
for all of X̂ . Instead, we can sample subsets (batches) of
X̂ and take a stochastic gradient descent step using each
batch. This does not affect performance in practice, so we
use it in our implementations of the various algorithms in this
paper. From now on, we will treat neural networks as black
box function approximators, specifying only the ∆ maps used
during gradient descent.

B. Persistent Homology

To capture homological properties of a point cloud, one
can generate a simplicial complex from that point cloud and
then compute the homology groups of that complex. One
such simplicial complex generated from a point cloud is the
Vietoris-Rips complex: if ε ≥ 0 is a fixed constant and X̂
is a set of points, we can define Rε(X̂) to be the simplicial
complex in which an n-simplex with vertices x0, . . . , xn is
present in the complex if and only if ∥xi − xj∥ ≤ ε for all
0 ≤ i, j ≤ n.

Varying ε, we can track how the rank of the n-th homology
group changes, giving the n-th dimensional persistence mod-
ule of the complex. Every persistence module can be uniquely
decomposed into a direct sums of interval modules, giving
a set of birth-death pairs {(bi, di)}i. Informally, these pairs
represent when n-dimensional holes in the complex appear
and are filled.

In this paper, we will be primarily concerned with the 0-
th dimensional persistent homology. In this case, the rank of
H0(Rε(X̂)) can be interpreted as the number of connected
components of Rε(X̂). A critical observation is that larger
0-dimensional death times correspond to rank H0(Rε(X̂))
decreasing at larger ε, which itself corresponds to data that
is more spread out.

C. Autoencoders

An autoencoder is a model composed of two maps

X L X,E D

where X is some initial space containing some data X̂ and L
is a latent space; usually, these are X = Rn and L = Rm for
m < n. For any x ∈ X , its latent representation E(x) is an
“encoded” version of x that is then “decoded” by D.

These maps E and D are chosen such that this encoding and
decoding are as lossless as possible. We usually cannot find

maps perfectly reconstructing each x ∈ X̂ , so we instead try
to minimize the expected reconstruction difference, as in (1).
If ∆ : X×X → R is some function measuring the difference
between its two inputs, we can express this as

argmin
E,D

Lrec(X),

where Lrec(X) := Ex∈X [∆(x,DE(x)] .

In addition to learning compressed representations of data,
autoencoders can be made into generative models. If y ∼ L,
then we expect D(y) to be qualitatively similar to points in X
whose encoded representations are close to y. Thus in order to
generate new data using an autoencoder, we need only sample
points from the latent space and map them through D.

D. Flaws with Generative Autoencoders

Perhaps the most obvious flaw with using autoencoders as
generative models is that we do not know a priori where the
encoded representations of our sample points in X will be in
L, making it difficult to sample from L effectively.

To realize this problem, we trained an autoencoder with a
2-dimensional latent space (L = R2) on the MNIST dataset of
hand-drawn digits so as to visualize the distribution of latent
embeddings. MNIST images are 28× 28 grayscale values, so
X = R784, and the dataset is standard in evaluating generative
models. We used a simple feed-forward architecture for both
E and D, each with two hidden layers of 64 nodes and using
ELU activations. All outputs from the decoder were passed
through a sigmoid function to ensure that only valid grayscale
values were produced.

Fig. 1. The fully connected feed-forward autoencoder architecture used
throughout our experiments. The only change to this architecture in any
experiment was the dimension of L.

To train the network, we used mean binary cross entropy
as the reconstruction loss and performend batch stochastic
gradient descent. Thus for a batch B, the total loss was

Lrec(B) = − 1

|B|
∑
x∈B

x log x̂+ (1− x) log(1− x̂),

where x̂ = DE(x).

Figure 2 shows the latent embeddings of 512 randomly
sampled training images using the fully-trained autoencoder
from above, where different colors represent images of dif-
ferent hand-drawn digits. Embeddings of the same digit are
clustering together, enforcing the intuition that being close in
the latent space corresponds to being close in the original
space; however, the embeddings are distributed irregularly,
so there is no obvious way to sample from this space with
complete coverage while avoiding the indescribable regions
where no embeddings lie.

Fig. 2. Latent embeddings of 512 sampled training points from the MNIST
dataset after training a simple feed-forward autoencoder to convergence, where
different colors represent images of different digits.

II. RELATED WORK

A common approach to addressing this sampling issue
is the variational autoencoder (VAE). Instead of E being a
deterministic map X → L, it maps points x ∈ X to normal
distributions N (µx, σ

2
x). To regularize the latent space, it

minimizes the expected Kullback-Leibler divergence between
the distributions output by the encoder and a standard normal
distribution, which is feasible computationally since it has a
closed form [5]. This forces the points in the latent space to be
approximately lie in a standard normal distribution, allowing
for easier sampling.

This is unsatisfying, however, as there is little reason for the
embeddings to be inherently stochastic. Although useful for
regularization purposes, adding noise to the latent embeddings
reduces the quality of the learned representations of individual
training points.

The application of a topology-based loss term to an au-
toencoder is not a novel idea. This same concept has been
addressed by Moor et al., 2020 [7]. In this paper, the authors
construct a topological loss term that is shown empirically
to aid in a variety of quality metrics while not having an
adverse effect on the reconstruction loss. However, their loss
aims to preserve topological structure of the input space in
the latent representation of the autoencoder. This differs from
our approach, as we try to regularize the latent space through
enforcing later death times of connected components.

A recent work, [2], also explores the use of topological reg-
ularization for deep neural networks. Theoretical connections
are made between the box dimension, a measure of model
complexity, and the 0th persistent homology dimension. The
authors also experiment with a loss term built upon the 0th
persistence diagrams, but the complexes are computed on the
model weights, not the latent space of a generative model.
Empirical experiments verify that their regularization loss term
acts as a proxy for the persistent homology dimension and
improves the model’s generalization ability.

III. METHODS

We propose a topological constraint that uses the 0-
dimensional persistent homology of embedded points to reg-
ularize the latent space without introducing any stochasticity.
Instead of matching distributions, our constraint forces deter-
ministic embeddings to lie approximately uniformly through-
out the closed unit ball of L.

In particular, denote the closed unit ball of L by DL and
suppose we have a set of points X̂ ⊂ X . Then we seek to find
E : X → DL and D : DL → X minimizing some arbitrary
reconstruction loss Lrec while spreading the points {E(x)}x∈X̂

uniformly throughout DL.
Approximately prohibiting embeddings from lying outside

the unit ball is simple: we add a penalty term to Lrec that is
0 if a point lies within the unit ball and increases the farther
a point is from the ball; however, this does not guarantee that
the whole unit ball will be filled, meaning that there could still
be unknown regions containing no embeddings.

To ensure that embeddings spread throughout the entirety of
the unit ball, we propose maximizing the death times of the 0-
dimensional persistent homology of the training points’ latent
embeddings. This maximization has the qualitative effect of
spreading points out within the latent space: since all points
in a Vietoris-Rips complex have the same fixed birth time of
0, the only way to increase death times is to move the points
farther away from each other. Coupled with the penalty for
leaving the unit ball, this ensures that the latent embeddings
fill the unit ball without venturing outside of it.

Formally, for any batch B, we define a topological penalty

Ltop(B) :=
∑
x∈B

max {∥x∥ − 1, 0} −
∑

d∈†(B)

d,

where †(B) is the set of 0-dimensional persistent homology
death times of the Vietoris-Rips complex determined by E(B).
The first sum penalizes points linearly based on their distance
from the unit ball, and the second sum promotes large 0-
dimensional death times. Thus our total loss for any batch
B is

Ltot(B) := Lrec(B) + λ Ltop(B),

where λ is some hyperparameter that determines how strictly
regularization is enforced. Since we expect that minimizing
this modified loss will lead to latent embeddings lying in the
entirety of the unit ball, we pick points uniformly from the
unit ball in order to sample from the latent space.

IV. IMPLEMENTATION AND RESULTS

To test that our topological regularization had its desired
effect on the latent space, we used the same setup as in
Section I-D. Figure 3 shows the latent embeddings of the
same 512 training images after training the same number of
epochs, this time with the topological regularization. These
embeddings all lie roughly within the unit ball in R2 and
expand to fill it entirely, meaning that sampling points from
this ball gives us complete coverage of our model’s learned
representations while never being at risk of sampling points
in regions where the model has no known behavior.

Fig. 3. Latent embeddings of the same 512 MNIST images from the
same autoencoder architecture used for Figure 2, but with our topological
regularization used during training.

To test if our regularization actually led to qualitatively
better generated images, we used the same autoencoder archi-
tecture but with batch size 128. We also varied the latent space
dimension among 2, 5, and 10. The standard autoencoder’s
latent space was sampled from by picking points from the
standard Gaussian distribution, while the topologically regular-
ized autoencoder’s latent space was sampled from by picking
points uniformly from the unit ball.

We trained our models using the MNIST and Fashion-
MNIST datasets. While MNIST is a standard dataset for
testing generative models, Fashion-MNIST contains more
complicated images and thus poses a stronger challenge.
Figure 4 shows example generated images from the fully
trained autoencoder on MNIST with latent dimension 2 both
without regularization (left) and with regularization (right).
Figure 5 is the same, but the autoencoders used 10-dimensional
latent spaces. Further details and results, including those for
Fashion-MNIST, can be found in Appendix A.

For L = R2, the standard autoencoder samples points with
reasonable decodings, but note the bimodality of the images:
they are all either a 3, 6, or a hybrid of the two. Since the
embeddings of the various digits are scattered in unknown
parts of the latent space, we cannot guarantee coverage. The
regularized autoencoder, on the other hand, does not suffer

from this lack of coverage and produces images of a similar
quality.

Fig. 4. Generated images with L = R2. Left: without regularization. Right:
with regularization.

Fig. 5. Generated images with L = R10. Left: without regularization. Right:
with regularization.

For L = R10, the irregular clusters of the standard au-
toencoder again prevent us from sampling effectively. Since
the dataset has remained fixed while the number of latent
dimensions has increased, we have increased the size of the
regions in the latent space where the model has unknown
behavior. It seems from Figure 5 that we have sampled from
one of these regions, resulting in nonsensical images. On the
contrary, the regularized autoencoder exhibits high coverage
without producing uninterpretable results, and its clarity has
improved over the L = R2 case, as one would expect with a
higher-capacity model.

V. LIMITATIONS AND DISCUSSION

During our experiments, there was no noticeable increase
in computation time when using our topological regulariza-
tion with batch size 128; however, there was a significant
increase with batch size 512 due to the increased difficulty
of computing the persistent homology death times. Thus this
regularization is most feasible when using small batch sizes.
Further computaitonal tricks and approximations might be

possible to reduce training time, but this would require further
research.

Although our topological regularization was somewhat lim-
ited by batch size, it was successful in improving generative
performance without sacrificing the quality of learned rep-
resentations. Our regularized models were more robust with
respect to the latent dimension when compared to standard
autoencoders, and they generated images qualitatively similar
to those of VAEs without injecting any stochasticity into the
latent embeddings.

More direct relationships between our regularized autoen-
coders and VAEs might exist. For instance, instead of using
the degree-0 total persistence

∑
d∈† d in Ltop, we could have

used the degree-k total persistence
∑

d∈† d
k. Qualitatively, the

latent embeddings would still fill all of DL, but as k increases,
more would begin clustering near the origin. Determining if
it is possible to approximate a standard normal distribution
(and thus the latent embedding distribution of VAEs) by
using variations of the total persistence like this would be an
interesting topic for further research.

A. Failed Methodologies

Before settling on the current implementation of our topo-
logical loss term, we experimented with a variety of TDA
metrics and methods. One such metric was the persistence
landscape, a way to vectorize a persistence diagram. Because
persistence landscapes have been shown to be both a stable
and robust metric [3], we thought they would encapsulate the
gradual clustering of the MNIST classes throughout training
so that we could use them in some capacity for a topo-
logical regularizer; however, we had difficulty determining a
reasonable way of using them in this capacity and struggled
with computationally efficient implementations. One thing to
note is that 0-dimensional persistent homology is generally
characterized by the death of each connected component, as
each connected component is born at the same time. Thus,
our metric does, in fact, capture the most salient features (the
death times) of a persistent landscape corresponding to the
0-dimensional persistent homology.

We also considered minimizing the 0-dimensional persistent
homology death times per class while still maximizing them
globally in order to promote class clustering in the latent space.
Balancing these competing goals proved tricky, and our models
struggled to converge with this updated objective.

VI. CONCLUSION

We presented a method of regularizing the latent space of
autoencoders that has been shown experimentally to improve
the quality of generated MNIST and Fashion-MNIST images.
We utilized TDA methods, specifically persistent homology,
to enforce the dispersion of points within the unit ball of
the latent space while maintaining the separation of classes,
leading to qualitatively realistic generated images–uniformly
sampled from the latent space–that are more representative of
the dataset.

As our topological loss term only requires a distance matrix
between samples, it is architecture independent. So, we hope
to apply our topological regularizer to more sophisticated au-
toencoders in the future. Furthermore, as our experimentation
largely focused on the MNIST and Fashion-MNIST datasets,
we hope to test our method on more complex datasets to see
if the same qualitative improvements in generated images are
realized.

APPENDIX A: EXPERIMENT DETAILS

All the code used in our experiments can be found
at github.com/bchoagland/TDA-Project, and is based on the
PyTorch and Gudhi libraries. All the collected data from
our experiments can be found at wandb.ai/bchoagland/TDA-
autoencoders. This includes generated images and latent em-
beddings (for 2-dimensional latent spaces) from every interme-
diate training epoch and resource allocation throughout train-
ing. Below we detail important training results that accompany
those in the main body of the paper.

Throughout our experiments, we used a fixed random seed
of 0 and the same feed-forward autoencoder architecture as in
Section I-D, with hidden layers of 64 nodes and ELU activa-
tions. We used the Adam optimization algorithm for all models
with a fixed learning rate of 0.0003. In general, we found it
best to set the regularization coefficient λ such that Ltop was
a small fraction of Lrec. This encouraged regularization of the
latent embeddings without significantly reducing the fidelity of
their reconstructions. In the following experiments, we used
λ = 0.005.

We also tested using separate coefficients for the disk and
topological penalties. We found that the disk penalty was
in general quite small compared to the topological penalty,
though, so a single coefficient for both was sufficient to en-
courage regularization without weighting the the disk penalty
too heavily.

The following two tables show generated images from
autoencoders trained to convergence (in this case, 100 epochs)
on the MNIST and Fashion-MNIST datasets with batch size
128 and latent dimension as listed. The left columns show
generated images from standard autoencoders, and the middle
columns from autoencoders trained with our topological regu-
larization. For comparison, the right columns are from VAEs
trained with the same parameters.

Note that in all cases, the standard autoencoders struggled to
generate reasonable images as the latent dimension increased,
and the generated images had poor coverage of the various
classes in the datasets. On the other hand, the regularized
autoencoders and the VAEs did not suffer from this issue
at all and in fact produced images of greater clarity as the
latent dimension increased. Also note that our regularization
produced images of similar quality to those of the VAEs.

Latent AE AE+Reg VAE

2

5

10

Latent AE AE+Reg VAE

2

5

10

A. Necessity of Topological Regularization

It is natural to ask whether the disk penalty by itself is
enough to regularize the latent space. To test this, we trained
an autoencoder on the MNIST dataset using the exact same
setup as in the previous experiment, except we removed the
persistent homology contribution in Ltop. Figure 6 shows how

https://github.com/BCHoagland/TDA-Project
https://wandb.ai/bchoagland/TDA-autoencoders
https://wandb.ai/bchoagland/TDA-autoencoders

the latent embeddings for the autoencoder with L = R2,
although lying entirely within DL, do not fill the whole ball.
Figure 7 shows how this irregularity lowers sampling quality
as the dimension of L increases.

0.75 0.50 0.25 0.00 0.25 0.50 0.75
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Fig. 6. MNIST latent embeddings from an autoencoder whose only regular-
ization was the disk penalty.

Fig. 7. Generated images from an autoencoder whose only regularization was
the disk penalty. From left to right: L = R2, L = R5, and L = R10.

REFERENCES

[1] Dor Bank, Noam Koenigstein, and Raja Giryes. Autoencoders. CoRR,
abs/2003.05991, 2020.

[2] Tolga Birdal, Aaron Lou, Leonidas Guibas, and Umut Simsekli. Intrinsic
dimension, persistent homology and generalization in neural networks.
In Advances in Neural Information Processing Systems, NeurIPS, vol-
ume 34, 2021.

[3] Peter Bubenik. Statistical topological data analysis using persistence
landscapes. J. Mach. Learn. Res., 16:77–102, 2015.

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes,
2014.

[6] Xiaoyu Li and Francesco Orabona. On the convergence of stochastic
gradient descent with adaptive stepsizes. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, Proceedings of the Twenty-Second Interna-
tional Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pages 983–992. PMLR, 16–
18 Apr 2019.

[7] Michael Moor, Max Horn, Bastian Rieck, and Karsten M. Borgwardt.
Topological autoencoders. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages
7045–7054. PMLR, 2020.

	Introduction
	Deep Neural Network Training
	Persistent Homology
	Autoencoders
	Flaws with Generative Autoencoders

	Related Work
	Methods
	Implementation and Results
	Limitations and Discussion
	Failed Methodologies

	Conclusion
	Necessity of Topological Regularization

	References

