
NATURAL GRADIENT METHODS FOR OPTIMIZATION AND
APPLICATIONS TO REINFORCEMENT LEARNING

BRADEN HOAGLAND

Abstract
Although widely used as a simple method for optimization, traditional gradient

descent is not optimal on general metric spaces. An extension of this method, natural
gradient descent, empirically exhibits better convergence rates by modifying the gra-
dient of a function to point in the steepest descent direction of the metric space of the
particular problem. This generalization is of particular use in the field of reinforcement
learning, where the modification of the gradient reduces to a left-multiplication by the
inverse of the Fisher information matrix. The inclusion of this matrix in policy gra-
dient methods empirically speeds up policy improvement, and an efficient calculation
of the matrix-gradient product using the conjugate gradient can be employed to scale
this method to larger problems.

Introduction

Gradient descent is a widely-used used method for minimizing nonlinear equations, and its
stochastic variant is a common way of fitting models to large amounts of data. Although it
is follows the direction of steepest descent in Euclidean spaces, it does not do so on general
manifolds.1 This issue mainly arises due to differing notions of the gradient of a function on
different spaces, but can be addressed by introducing a regularizer. This takes the form of
a matrix that modifies the Euclidiean gradient to be correct in more general metric spaces,
and is referred to as the “natural gradient”.

In this paper, we will motivate the natural gradient using the gradient descent framework,
then highlight its properties when applied specifically to gradient descent on probability
spaces. We will then show its applications to the field of reinforcement learning, in which it
has been used to create state-of-the-art algorithms for continuous control tasks.7,9

Gradient Descent and Trust Regions

In gradient descent, one of the simplest methods of optimization, a differentiable function
f(x) is optimized iteratively by following the direction of steepest descent, i.e., the gradient.
An iteration for this method can be written

xt+1 = xt − αt∇f(xt),

where α is a step size chosen small enough to keep the local gradient information accurate.
An exact line search for αt makes each step more efficient, but is only feasible when com-
puting the minimum of f(x) along a given search direction is cheap. This occurs when the
form of f(x) is known and well understood, such as f(x) being quadratic. For arbitrary

2 Braden Hoagland

functions, a backtracking line search may be used instead. An optimistic α is chosen and
then repeatedly decreased until a decrease condition on f(xt+αt∇f(xt)) is met. A simpler
method is to just use a fixed step size, although the performance of this is strictly worse
than that of the line search methods.

Gradient descent can also be viewed as a trust region method.12 Trust region methods
construct a model of f(x) that has bounded error over some small region around the current
iterate. This model is constructed in such a way that it can be easily optimized at each
step. The optimization of f(x) reduces to the optimization of many smaller sub-problems,
namely the optimization of many locally-accurate models of f(x).

In the particular case of gradient descent, the model is linear and a constraint is placed
on the distance between iterates xt and xt+1.

xt+1 = arg min
x

f(xt) +∇f(xt)
T (x− xt)

s.t. ∥x− xt∥ = δt,

where δt ≥ 0 is some constant that depends on the step size αt. In the case of a fixed step
size α, we have δt = δ ∀t. The constraint can be equivalently written

1

2
∥x− xt∥2 =

δ2

2
=: ε,

which will allow for simplified computation later on. Gradient descent is formulated using
the Euclidean norm, but this can be unsatisfying. Such a choice imposes a Euclidean
geometry on f(x), which leads to a geometric mismatch when a non-Euclidean function is
being optimized.

A simple example is the optimization of probability distributions parameterized by xt.
Suppose xt = (µt, σt), where µt and σt are, respectively, the mean and standard deviation
of a univariate Gaussian distribution. In this case, we can generate distributions which are
significantly different in a qualitative sense but have the same Euclidean distance from each
other in terms of xt.

Figure 1: The parameters of the orange distributions all have
the same Euclidean distance from the parameters of the blue
distribution, yet each orange distribution is considerably qual-
itatively different.

The Natural Gradient and Reinforcement Learning 3

In fact, for Riemannian manifolds in general, the gradient isn’t the steepest descent
direction.1 The direction of steepest descent for a function f on a manifold is defined as
follows: it is the vector dx that minimizes f(x + dx) under the constraint that |dw|2 is a
sufficiently small constant. In Euclidean space, |dw|2 =

∑
i |dxi|2, so gradient descent uses

the correct notion of distance. On a Riemannian manifold, however, this form is a more
general quadratic |dw|2 =

∑
i,j gij(x) dxi dxj = xTGx. The elements gij make up what’s

called the metric tensor G for the coordinate system based on x.1
We can describe a point on a general manifold by transforming a point from the base

coordinates using the metric tensor G. Intuitively, this matrix weights certain dimensions in
our base coordinate system more than others when describing distance in the corresponding
metric space.

The Natural Gradient on Metric Spaces

To incorporate this notion of distance into the gradient descent formulation, we modify
the Euclidean norm to be weighted by G. This gives us a gradient descent scheme with a
slightly modified trust region constraint

xt+1 = arg min
x

f(xt) +∇f(xt)
T (x− xt)

s.t. 1

2
∥x− xt∥2G = ε,

where the norm now takes on the form ∥x∥2G = xTGx. This particular constrained opti-
mization problem can be solved straightforwardly using the method of Lagrange multipliers.
The general strategy we will follow is to first determine the optimal update direction, then
find the maximum step size such that the trust region constraint is not violated.

We begin by forming the Lagrangian, which for this problem is

L(x, λ) = f(xt) +∇f(xt)
T (x− xt)− λ

(1
2
∥x− xt∥2G − ε

)
.

To find the optimal search direction, we can find the optimal d = x− xt.

∂L
∂d

= 0

∇f(xt)− λGd = 0

d =
1

λ
G−1∇f(xt).

Thus the optimal update is in the direction of G−1∇f(xt). This means we can form an
update rule based on gradient descent, but using this modified gradient as the descent
direction.

xt+1 = xt − βG−1∇f(xt),

where β is a currently unknown step size that takes the place of the 1
λ term. The term

G−1∇f(xt) is not only a descent direction, it is in fact the direction of steepest descent on
a general Riemannian manifold.1

This update rule is still incomplete, however, since the optimal step size β is unknown.
Fortunately, we can solve for β analytically using the update rule and the trust region

4 Braden Hoagland

constraint.
1

2
∥xt+1 − xt∥2G = ε

1

2
∥ − βG−1∇f(xt)∥2G = ε

1

2
β2∥G−1∇f(xt)∥2G = ε

β =

√
2ε

∥G−1∇f(xt)∥2G
.

Since ε = 1
2δ

2, this can be simplified to

β =
δ

∥G−1∇f(xt)∥G
.

Substituting this into our update rule, we get

xt+1 = xt − βG−1∇f(xt)

xt+1 = xt − δ
G−1∇f(xt)

∥G−1∇f(xt)∥G
.

This final expression is easily connected with standard gradient descent. Letting G = I
(which is the case if we are optimizing a function in Euclidean space), we recover the
standard gradient descent formulation with a normalized gradient.

We refer to G−1∇ as the “natural gradient”. We also make two other notation decisions.
First, to preserve the use of only one modifiable constant, we use the variant of the step
size that is based on ε (this is mainly based on convention). Second, to emphasize the
computation required to compute the squared G-weighted norm, we express it in its xTGx
form instead of the ∥ · ∥2G form.

With these notation decisions in place, we can formally summarize the natural gradient
method in Algorithm 1.

Algorithm 1 Natural Gradient Descent on a Metric Space
Require: f(x) : Rn → R, G, small ε > 0, initial guess x0

while not converged do
g ← G−1f(xt)

β ←
√

2ε
gTGg

xt+1 = xt − βg
end while

This general formulation is not practical, however, since G is unknown for an arbitrary
metric space. To implement this algorithm, we need to know what space we’re working in
and derive an expression for G. Doing so for probability space is useful, as it will allow us
to optimize probabilistic models.

The Natural Gradient and Reinforcement Learning 5

The Natural Gradient on Probability Spaces

In order to use the natural gradient to optimize a function over probability space, we
must express a probability metric with a matrix. We can then use it in place of the metric
tensor G. A suitable metric for this purpose is the Fisher information metric,1 which can
be expressed as the expected outer product of the gradient of a log probability:

F = Ex∼pθ

[
(∇ log pθ(x))(∇ log pθ(x))T

]
.

To motivate the use of this metric, we note its relationship with the widely-used Kullback-
Leibler (KL) divergence. KL divergence, although not a metric itself due to a lack of
symmetry, can be used to quantify differences between probability distributions. To show
its relationship with the fisher information matrix, we derive a trust region method based
on a KL divergence constraint and then show that this update rule is in fact based on the
Fisher information matrix. This can provide useful intuition for how this metric constrains
the optimization.

To begin, the KL divergence is defined as the “relative entropy” between two distribu-
tions. The entropy of a distribution p in information theory is defined

H(p) = −Ex∼p[log p(x)],

so the relative entropy between arbitrary distributions p and q can be similarly defined

DKL(p ∥ q) = Ex∼p[log p(x)]− Ex∼p[log q(x)]

= Ex∼p

[
log p(x)

q(x)

]
.

It is natural to use this to define our trust region during the optimization process. If the
iterates, which we denote by θt, model probability distributions, then we can constrain the
KL divergence between subsequent distributions to be some small constant ε. Our update
rule with this constraint is

θt+1 = arg min
θ

f(θt) +∇f(θt)T (θ − θt)

s.t. DKL(pθt ∥ pθ) = ε.

To use this constraint with the natural gradient update scheme would not be feasible, as
the KL divergence is not expressed in terms of some matrix. A workaround for this issue is
to instead approximate the KL divergence using a second order Taylor expansion,8 Letting
d = θ − θt, the KL divergence before the expansion can be written

DKL(pθt ∥ pθ) =
∫

pθt(x) log pθt(x)

pθ(x)
dx

=

∫
pθt(x) log pθt(x)dx−

∫
pθt(x) log pθ(x)dx.

Taylor expanding the log pθ(x) term in the second integral to second order yields

=

∫
pθt(x) log pθt(x)dx

−
∫

pθt(x)
(

log pθt(x) +∇ log pθt(x)T d+
1

2
dT (∇2 log pθt(x))d

)
dx

+O(∥d∥3),

6 Braden Hoagland

where the gradients are implicitly taken with respect to only the parameters θt, not x. The
first integral cancels out with the first term of the second integral, yielding

= −
(∫

pθt(x)∇ log pθt(x)dx
)T

d− 1

2
dT

(∫
pθt(x)∇2 log pθt(x)dx

)
d

+O(∥d∥3).

The first integral in this expression can be evaluated

∫
pθt(x)∇ log pθt(x)dx =

∫
pθt(x)

∇pθt(x)
pθt(x)

dx

=

∫
∇pθt(x)dx

= ∇
∫

pθt(x)dx

= ∇1
= 0,

so the KL divergence is

DKL(pθt ∥ pθ) = −
1

2
dT

(∫
pθt(x)∇2 log pθt(x)dx

)
d+O(∥d∥3)

=
1

2
∥d∥2F +O(∥d∥3).

where F = −
∫
pθt(x)∇2 log pθt(x)dx is an alternate form of the Fisher information matrix

(see A for details). Note that this form of the KL divergence approximately matches the form
of the general G-weighted constraint. Thus we can keep the KL divergence approximately
fixed at ε by using a natural gradient update scheme with F taking the place of the metric
tensor G. As ε→ 0, we also have d→ 0, so this intuition becomes more accurate the more
we restrict the size of the Fisher information trust region.

Another way to view this relationship between KL divergence and the Fisher information
metric is to note that the latter is the infinitesimal version of the former. Since KL divergence
is symmetric in the limit as two distributions approach each other, it can be considered a
metric in the limit as ε → 0. This infinitesimal KL metric then reduces to the form of the
Fisher information metric.

Having shown the implications of using the Fisher information metric, we can simply
plug F into Algorithm 1 to obtain a special case of the procedure for probability spaces.
Note that since we cannot calculate the expectation of the metric exactly, we approximate
it with samples. For a small number of parameters, this is a feasible procedure. For a large
numbers of parameter, however, this becomes very costly and can be replaced by other
techniques that will be introduced later.

The Natural Gradient and Reinforcement Learning 7

Algorithm 2 Natural Gradient Descent on a Probability Space
Require: f(x) : Rn → R, small ε > 0, initial guess θ0, N > 0

while not converged do
% Approximate the Fisher information metric
Sample {xi}Ni=1 ∼ pθt
G← 1

N

∑N
i=1(∇θt log pθt(xi))(∇θt log pθt(xi))

T

% Take a natural gradient step
g ← G−1∇f(θt)
β ←

√
2ε

gTGg

θt+1 = θt − βg
end while

To demonstrate the performance of natural gradient descent on probability spaces, we
can examine the example application of maximum likelihood estimation. In this setting,
we attempt to fit a parameterized probability distribution to given data by maximizing a
likelihood function. A particular case is when the model is a Gaussian and we attempt to
find the optimal mean µ and standard deviation σ. Figure 2 shows the iterative parameters
chosen by both gradient descent and natural gradient descent while attempting to fit a set
of points sampled from N (12, 42).

Figure 2: Gradient descent and natural gradient descent finding
the optimal parameters µ = 12, σ = 4, starting with initial
parameters µ = 0, σ = 1. Both methods used a fixed step size
of 1× 10−4.

In order to compare the two methods, the same fixed step size was used for both. From
the resulting iterations, it can be seen that while gradient descent makes little progress per
update (so that the individual points on the graph seem to form a continuous line) and
is initially driven away from the global optimum, natural gradient descent is able to make
considerable progress at every update and is not driven nearly as far away from the global
optimum at the beginning.

8 Braden Hoagland

Both methods exhibit a large parameter jump at the beginning of training, and this,
along with the overall performance difference, can be explained by examining the gradients
at each particular point on this space. The gradients and natural gradients are compared
in figure 3.

Figure 3: The gradients and natural gradients for the MLE
problem. The natural gradients can be seen to be more similar
in length, allowing for more normalized progress to be made in
this space. The unmodified gradients, on the other hand, grow
dramatically as the standard deviation approaches 0.

From this figure it is clear that the initial parameter jump is due to the magnitude of
the gradients growing as the mean approaches 0. In the case of gradient descent, however,
these gradients grow unchecked, dwarfing the other gradients pictured. The small gradient
magnitudes for larger values of µ explain why such little progress is made per iteration with
the gradient descent scheme, and the initial large gradient magnitudes cause instability when
the learning rate is increased.

The natural gradient, on the other hand, does not exhibit this behavior. Instead, its
gradients are more comparable in magnitude, with the initial gradients not increasing µ as
much and the later gradients pushing both parameters closer to the optimum as a faster
rate.

This example demonstrates that we can solve optimization problems in probability space
more effectively by using the natural gradient instead of just the gradient; however, this can
be extended to cases beyond just supervised machine learning. One such application is
policy improvement in reinforcement learning.

Reinforcement Learning

Given some agent acting in an arbitrary environment, reinforcement learning (RL) meth-
ods attempt to optimize the agent’s performance using, in a rough sense, trial and error.
We model the agent and environment as follows: let S denote the set of all possible states
of the environment and A the set of all possible agent actions. Let st denote the state of the
environment at time t, and at the action of the agent at time t. The environment is assumed
to operate with Markovian transition dynamics, i.e., the next state of the environment de-
pends only on the current state and action. We denote the transition dynamics with the
distribution p(st+1|st, at), although we will assume that this distribution is unknown. As
the agent interacts with its environment, it generates a trajectory τ = (s0, a0, s1, a1, . . . , sT),

The Natural Gradient and Reinforcement Learning 9

where T is some terminal time step (which can be set to ∞ for tasks with no explicit end
point).

The agent can be said to act according to some policy π(at|st), where π is a distribution
of actions at conditioned on the current state of the environment st. The policy π need not be
represented explicitly, although it is always at the very least induced by some action selection
process. The agent’s desired task is represented with a reward function r : S × A → R,
which takes in the state of the environment and the action performed by the agent and
produces a real number that quantifies how well the agent is performing. The goal of RL
can then be restated as trying to find the policy π that maximizes evaluations of this reward
function throughout the agent’s interactions with the environment. This yields the classical
RL objective

J(π) = Eπ

[T∑
t=0

r(st, at)
]
.

The optimal policy is then π∗ = arg maxπ J(π). One strategy for finding this optimal policy
is to directly parameterize the policy with some θ, which we can denote πθ. We define a
new objective

J̃(θ) = Eπθ

[T∑
t=0

r(st, at)
]
,

which is just the original objective but written as a function of θ and using the parameterized
version of the policy. A simple and reasonable method of maximizing this new objective is
running gradient ascent on it with respect to θ. Such methods are referred to as “policy
gradient” methods.

Policy Gradient Methods and the Natural Gradient

The most basic policy gradient method has the update scheme

θ ← θ + α∇θJ̃(θ).

In this case, all we must calculate is the gradient term. During this calculation, it will be
helpful to know the structure of the density of some trajectory τ . We denote the density of τ
conditioned on the current policy p(τ |πθ). Since the environment has Markovian dynamics,
this density is

p(τ |πθ) = ρ(s0)

T∏
t=0

πθ(at|st)p(st+1|st, at),

where ρ(s0) denotes the initial state distribution of the environment. As it will be useful
later, we can also calculate the logarithm of this expression

log p(τ |πθ) = log ρ(s0) +
T∑

t=0

logπθ(at|st) + log p(st+1|st, at).

10 Braden Hoagland

We now begin calculating the gradient term in the gradient ascent scheme.

∇θJ̃(θ) = ∇θEπθ

[T∑
t=0

r(st, at)
]

= ∇θ

∫
p(τ |πθ)

T∑
t=0

r(st, at) dτ

=

∫
∇θp(τ |πθ)

T∑
t=0

r(st, at) dτ.

By examining the expression for ∇θp(τ |πθ) above, it is clear that the gradient will rely on
the transition dynamics. Since the dynamics are unknown, we cannot calculate this. We
can, however, use the identity ∇ logx = ∇x

x to transform the integral.11

=

∫
p(τ |πθ)∇θ log p(τ |πθ)

T∑
t=0

r(st, at) dτ

= Eπθ

[
∇θ log p(τ |πθ)

T∑
t=0

r(st, at)
]
.

By examining the expression for the log density of τ , we see that the gradient of this term
does not rely on the transition dynamics and instead relies only on logπθ. Our final gradient
expression is

∇θJ̃(θ) = Eπθ

[(T∑
t=0

∇θ logπθ(at|st)
)(T∑

t=0

r(st, at)

)]
.

Since we control θ, we can determine the form of πθ and know how to calculate log densities.
Thus we can calculate the terms inside the expectation exactly, and the expectation itself
we can approximate using sampling.11

This allows us to define a more explicit policy gradient algorithm in which we sample
multiple trajectories, calculate the above expectation using these samples, and then use this
to perform a gradient update on the parameters of our policy.

Algorithm 3 Basic Policy Gradient
Require: N , step size α, initial θ

while not converged do
Sample {τi}Ni=1

g ← 1
N

∑N
i=1

(∑T
t=0∇θ logπθ(at|st)

)(∑T
t=0 r(st, at)

)
θ ← θ + αg

end while

One shortcoming of this algorithm is its data inefficiency. Multiple trajectories are needed
to gain an accurate estimation of the policy gradient, but gaining multiple trajectories
requires many interactions with the environment.

To address this inefficiency, we can take natural gradient steps instead.3 We saw that
the natural gradient made maximum likelihood estimation more efficient, so it is reasonable

The Natural Gradient and Reinforcement Learning 11

to assume that it may have a similar effect here. Since the policy gradient method operates
in probability space, using the natural gradient is equivalent to left multiplying the policy
gradient by the inverse of the Fisher information matrix. This gives us the natural policy
gradient method, which uses the same sampling approximations as in Algorithm 3.

Algorithm 4 Natural Policy Gradient
Require: N , step size α, initial θ

while not converged do
Sample {τi}Ni=1

F ← 1
TN

∑N
i=1

∑T
t=0

(
∇θ logπθ(at|st)

)(
∇θ logπθ(at|st)

)T
g ← 1

N

∑N
i=1

(∑T
t=0∇θ logπθ(at|st)

)(∑T
t=0 r(st, at)

)
θ ← θ + αF−1g

end while

To compare the natural policy gradient with the policy gradient, we can construct a toy
environment with a simple task. Let the state space simply be the real number line, and
let the agent start at the origin. At every time step, it samples a number from a Gaussian
N (µ, σ2) and moves that distance from its current location. If we want the agent to simply
learn to do nothing, then we can define the reward function to be r(s, a) = −s2 − a2. The
performance of both algorithms in learning the optimal µ and σ in this environment are
shown in Figure 4.

Figure 4: The average cumulative reward of ten agents trained
by the policy gradient (PG) and natural policy gradient (NPG)
on the toy environment, with the average reward across all ten
agents denoted by the bold lines. Both methods used the fixed
step size 0.075.

Beginning with poorly-chosen initial parameters µ = 10 and σ = 14, the natural policy
gradient was able to quickly minimize µ and σ, compared to the basic policy gradient.
Calculating the explicit natural gradients for this scenario shows that the terms of the
natural gradient are just those of the gradient but multiplied by σ2 and an additional
constant. This allows for larger steps at the beginning of training when σ is large. This
combats a particular problem posed by this toy environment, which is that the gradient

12 Braden Hoagland

term corresponding to σ is low compared to the gradient term corresponding to µ. This
causes the variance of the policy to remain high for many iterations, which leads to many
sub-optimal actions and the slow learning of the policy gradient.7

This particular environment allowed for a simple policy with few parameters, but for
more general policies, many parameters are necessary. In this case, the Fisher information
matrix is expensive to construct and invert. An efficient calculation of the Fisher information
matrix must then be developed.

Efficiently Calculating the Fisher Information Matrix

Instead of forming and then inverting the Fisher information matrix, it is of computa-
tional benefit to instead calculate just the matrix vector product g = F−1∇θJ(θ). If we
left-multiply both sides of this equation by F , we get Fg = ∇θJ(θ). Then if we have access
to a function that maps g → Fg, we can solve this system of equations without ever explic-
itly forming F or F−1. One possible choice for solving this system is using the conjugate
gradient method, which was employed successfully in the Trust Region Policy Optimization
algorithm, a modification of the natural policy gradient with performance improvement
guarantees.9

Conclusion

We saw that the natural gradient extends gradient descent into general metric spaces,
which is especially useful when optimizing probabilistic models. We also saw that the nat-
ural gradient can increase the efficiency of reinforcement learning algorithms. In fact, it
plays a major role in most state-of-the-art reinforcement learning methods. For example,
the aforementioned Trust Region Policy Optimization is a recent extension of the natu-
ral gradient,9 and Proximal Policy Optimization uses the connection between the natural
gradient and KL divergence to relax the trust region constraint for more efficient policy
updates.10

It is also possible to derive completely different optimization methods using the same
trust region formulation. It is possible to limit policy updates using the Wasserstein distance
from optimal transport theory instead of KL divergence.13 Such methods can be shown to
have ties to the natural gradient that we derived.5 This also shows potential connections
between reinforcement learning and generative modeling, the latter of which commonly uses
Wasserstein distances. The extent of the connections between these two branches of machine
learning and the effect of trust regions on optimizing generative models are outside the scope
of this paper, but are potential areas for future research.

REFERENCES

[1] Amari, S., 1997. Neural Learning in Structured Parameter Spaces - Natural Rieman-
nian Gradient, in: Mozer, M.C., Jordan, M.I., Petsche, T. (Eds.), Advances in Neural
Information Processing Systems 9. MIT Press, pp. 127–133.

[2] Bernacchia, A., Lengyel, M., Hennequin, G., 2018. Exact natural gradient in deep lin-
ear networks and its application to the nonlinear case, in: Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (Eds.), Advances in Neural
Information Processing Systems 31. Curran Associates, Inc., pp. 5941–5950.

The Natural Gradient and Reinforcement Learning 13

[3] Kakade, S.M., 2002. A Natural Policy Gradient, in: Dietterich, T.G., Becker, S., Ghahra-
mani, Z. (Eds.), Advances in Neural Information Processing Systems 14. MIT Press, pp.
1531–1538.

[4] Kunstner, F., Balles, L., Hennig, P., 2019. Limitations of the Empirical Fisher Approx-
imation for Natural Gradient Descent. arXiv:1905.12558 [cs, stat].

[5] Li, W., Montufar, G., 2019. Natural gradient via optimal transport. arXiv:1803.07033
[cs, math].

[6] Pascanu, R., Bengio, Y., 2014. Revisiting Natural Gradient for Deep Networks.
arXiv:1301.3584 [cs].

[7] Peters, J., Schaal, S., 2008. Reinforcement learning of motor skills with policy gradients.
Neural Networks, Robotics and Neuroscience 21, 682–697.

[8] Ratliff, N., n.d. Information Geometry and Natural Gradients 8.

[9] Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P., 2017a. Trust Region
Policy Optimization. arXiv:1502.05477 [cs].

[10] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017b. Proximal
Policy Optimization Algorithms.

[11] Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y., 2000. Policy Gradient Meth-
ods for Reinforcement Learning with Function Approximation, in: Solla, S.A., Leen,
T.K., Müller, K. (Eds.), Advances in Neural Information Processing Systems 12. MIT
Press, pp. 1057–1063.

[12] Yuan, Y., 1999. A Review of Trust Region Algorithms for Optimization. ICM99: Pro-
ceedings of the Fourth International Congress on Industrial and Applied Mathematics.

[13] Zhang, R., Chen, C., Li, C., Carin, L., 2018. Policy Optimization as Wasserstein Gra-
dient Flows.

14 Braden Hoagland

A ALTERNATE FORM OF THE FISHER INFORMATION MATRIX

The matrix F = −
∫
pθt(x)∇2 log pθt(x) dx is in fact the Fisher Information matrix, as shown

below. All gradients in the following derivation are implicitly taken with respect to θt. We
begin by expanding ∇2 log pθt(x).

∇2 log pθt(x) = ∇
∇pθt(x)

pθt

=
pθt(x)∇2pθt(x)−∇pθt(x)∇pθt(x)T

pθt(x)
2

=
∇2pθt(x)

pθt(x)
− ∇pθt(x)∇pθt(x)

T

pθt(x)
2

Using the identity ∇ logx = ∇x
x , we can simplify the rightmost fraction.

=
∇2pθt(x)

pθt(x)
−∇ log pθt(x)∇ log pθt(x)T

Plugging this into the definition of F yields

F = −
∫

pθt(x)∇2 log pθt(x) dx

=

∫
pθt(x)∇ log pθt(x)∇ log pθt(x)T dx−

∫
∇2pθt(x) dx

= Ex∼pθt

[
∇ log pθt(x)∇ log pθt(x)T

]
−∇2

∫
pθt(x) dx

= Ex∼pθt

[
∇ log pθt(x)∇ log pθt(x)T

]
−∇21

= Ex∼pθt

[
∇ log pθt(x)∇ log pθt(x)T

]
which is the definition of the Fisher information matrix.

	Alternate Form of the Fisher Information Matrix

