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1 INTRODUCTION

Spectral sequences are a computational tool in homological algebra that allow for the homol-
ogy of an unwieldy space to be broken down into a sequence of smaller computations. In this
paper, we develop the basic theory of spectral sequences and their common constructions,
finishing with a fundamental sufficient condition for their convergence.

At a very high level, each “element” of a spectral sequence gives a higher order approx-
imation to the homology of a doubly graded object. For many objects, we need only take
a finite number of approximations before we obtain the true homology, making spectral
sequences a practical instead of just a theoretical tool.

2 PRELIMINARIES

To begin working with homological objects, we first define a basic notion of homology. We
say a sequence of R-modules A is a chain complex if it comes equipped with morphisms
dn : An → An−1 (called differentials) such that d2 = 0.

· · · An An−1 · · ·dn+1 dn dn−1

Because of the condition d2 = 0, we know Im dn ⊂ Ker dn−1. If we also have the reverse
inclusion for all n, i.e. the image of one map equals the kernel of the next, then we say that
A is exact. To measure the failure of a complex to be exact, we introduce the notion of
homologies. Define the n-th homology to be the quotient

Hn(A)
.
= Ker dn/ Im dn+1.

Viewing chain complexes as objects in some category, we can naturally define morphisms
between them. A homomorphism of complexes f : A → B is a collection of R-module
homomorphisms fn : An → Bn that respect the differentials of A and B. Visually, this
means the following diagram commutes.

· · · An An−1 · · ·

· · · Bn Bn−1 · · ·

fn fn−1



Proposition 1. A homomorphism of complexes induces a homomorphism between those
complexes’ homologies.

Proof. Let f : A → B be a homomorphism of complexes, then define the map

φn : Hn(A) → Hn(B)

[a] 7→ [fn(a)].

This is a homomorphism since each fn is a homomorphism. All that’s left to show is that this
is well-defined, which follows from the commutativity of the above diagram. If z ∈ Ker dAn ,
then (d ◦ fn)(z) = (fn−1 ◦ d)(z) = fn−1(0) = 0, so fn(z) ∈ Ker dBn . Thus f maps kernels
to kernels. If z ∈ Im dAn+1, then z = d(a) for some a ∈ An+1, so fn(z) = (fn ◦ d)(a) =
(d ◦ fn+1)(a), so fn(z) ∈ Im dBn+1. Thus f also maps images to images, so the induced map
between homologies is well-defined.

The notion of short exact sequences can be readily extended to work with chain com-
plexes. We say a sequence 0 → A → B → C → 0 of complexes is exact if each sequence of
modules 0 → An → Bn → Cn → 0 is exact.

The last tool we will need to work with spectral sequences is the long exact homology
sequence. It allows us to extend a short exact sequence of complexes into a long exact
sequence of the homologies. In order to prove it, we’ll make use of the Snake Lemma, which
we present here without proof.

Lemma 1 (Snake Lemma). Suppose the rows of

A B C 0

0 A′ B′ C ′

a b c

are exact, then there is an exact sequence

Ker a → Ker b → Ker c → A′/ Im a → B′/ Im b → C ′/ Im c.

Theorem 1. Suppose 0 → A → B → C → 0 is a short exact sequence of complexes, then
there is a long exact sequence of homologies

· · · → Hn(A) → Hn(B) → Hn(C) → Hn−1(A) → Hn−1(B) → · · · .

Proof. Suppose the morphisms in the short exact sequence are f : A → B and g : B → C,
then consider the diagram

An/ Im dAn+1 Bn/ Im dBn+1 Cn/ Im dCn+1 0

0 Ker dAn−1 Ker dBn−1 Ker dCn−1

f∗
n

a

g∗
n

b c

f∗
n−1 g∗

n−1

where f∗
n and g∗n are induced by f and g and are well-defined by Proposition 1. The vertical

map a is induced by dAn by
a([x]) = dAn (x),



and the maps b and c are defined similarly. The exactness of both rows follows from the
assumption that Ker gn = Im fn for all n. We also have

Ker a =
Ker dAn
Im dAn+1

= Hn(A),

Ker dAn−1

Im a
=

Ker dAn−1

Im dAn
= Hn−1(A),

with similar statements for the other kernels and cokernels. Thus by the Snake Lemma,
there is an exact sequence

Hn(A) → Hn(B) → Hn(C) → Hn−1(A) → Hn−1(B) → Hn−1(C).

Chaining togehter the respective exact sequences for each n gives the desired long exact
sequence of homologies.

3 SPECTRAL SEQUENCES

With these preliminaries taken care of, we can define and study spectral sequences. In
particular, we will be working spectral sequences of homological type, as defined below.
Definition 1. A spectral sequence is a collection E = {Er}r≥0 of bigraded R-modules called
pages. Each page Er is equipped with endomorphisms

dr : Er → Er

such that dr ◦ dr = 0. These are the differentials of Er. The pages are related by

Er+1 ∼= H∗(E
r).

A homological spectral sequence is a spectral sequence whose differentials have bidegree
(−r, r − 1), i.e.

dr : Er
p,q → Er

p−r,p+r−1.

We’ll be primarily concerned with the case when all Er
p,q are in the first quadrant, i.e.

Er
p,q is nonzero only when p, q ≥ 0.

• • •

• • •

• • •

Figure 1: Some differentials for r = 2. Each dot represents some Er
p,q.

The choice of bidegree for each dr might seem rather odd. In fact, it is actually quite
natural, and we will see why later on in the discussion preceding Theorem 3.

Eventually, every Er
p,q will stabilize in the sense that Er+1

p,q = Er
p,q. Fix some pair p, q,

then for r > max {p, q + 1}, the differential coming into Er
p,q will come from the fourth

quadrant, and the differntial coming out of Er
p,q will enter the second quadrant. This gives

us the complex



0 Er
p,q 0dr dr

which shows that the homology of Er
p,q is H(Er

p,q) = Er
p,q/0 = Er

p,q. This gives us a notion
of pointwise convergence within our spectral sequence, and we denote the stable value of
Er

p,q by E∞
p,q.

A natural question is what these limiting terms actually approach and how the informa-
tion they contain is helpful. In the next two sections, we examine how spectral sequences
arise, and from this we can deduce what E∞

p,q actually represents and how it can be useful.

4 EXACT COUPLES

The first way we can build a spectral sequence is through an exact couple. Interesting
spectral sequences arise directly from some exact couples, and they are also useful in serving
as a stepping stone in the construction process. In the next section, we will see how particular
complexes can be turned into exact couples, after which we can carry out the below process
and gain a spectral sequence.

Definition 2. An exact couple is a cyclic long exact sequence of R-modules

· · · E D D E · · · .j k i j k

We can depict an exact couple more compactly with the following diagram.

D D

E

i

jk

Note that D and E have no additional structure or grading. We will see the effects of adding
a grading soon, but it is unnecessary for our initial analysis.

By exactness, k ◦ j = 0. Then if we define an endomorphism of E by d
.
= j ◦ k, we get

d ◦ d = (jk)(jk) = j(kj)k = 0. It then makes sense to define H∗(E, d), the homology of E
with respect to d.

This induces a new couple, which we call the derived couple, where D is replaced by i(D)
and E is replaced by its homology H∗(E) with respect to d.

i(D) i(D)

H∗(E)

i′

j′k′

The maps in the derived couple are defined

i′
.
= i | i(D) ,

j′(i(x))
.
= [j(x)] ,

k′([y])
.
= k(y) ,

where the equivalence classes [ · ] are modulo the image of d.

Proposition 2. The derived couple of an exact couple is itself an exact couple.



Proof. The fact that j′i′ = k′j′ = i′k′ = 0 all follow from expressing them in terms of i, j, k
and using the assumed property ji = kj = ik = 0. Then we must show that the kernel of
each map is contained in the image of the previous map. Suppose j′(i(x)) = [j(x)] = 0,
then j(x) ∈ Im d, so for some y ∈ E,

j(x) = (jk)(y) =⇒ x− k(y) ∈ Ker j = Im i.

This implies x− k(y) = i(z) for some z ∈ D. Then since ik = 0,

i(x− k(y)) = i(x) = i2(z) ∈ Im i′.

Thus Ker j′ ⊂ Im i′. If y ∈ E and k′([y]) = k(y) = 0, then y ∈ Ker k = Im j, so for some
z ∈ D,

y = j(z) =⇒ [y] = [j(z)] = j′(i(z)) ∈ Im j′.

Thus Ker k′ ⊂ Im j′. Finally, if z ∈ D and i′(i(z)) = i2(z) = 0, then i(z) ∈ Ker i = Im k.
Then for some y ∈ E, we have i(z) = k(y) = k′([y]) ∈ Im k′. Thus Ker i′ ⊂ Im k′. This
shows that our derived couple is in fact an exact couple.

Iterating, we can construct a sequence of exact couples with the familiar properties that
the next “E” term is the homology of the previous one and that our “d” maps become 0
when composed. Adding in a bigrading makes this into a spectral sequence.

Theorem 2. Suppose D and E are bigraded R-modules that form an exact couple with
maps i, j, k satisfying

deg i = (1,−1), deg j = (1,−1), deg k = (−1, 0),

then this exact couple determines a homological spectral sequence {Er}r≥0 with Er the r-th
derived couple.

Proof. First note that by their definitions,

deg i(r) = deg i,
deg k(r) = deg k

for all r. We can then show that deg d(r) = (−r, r−1) by induction on the degree of j(r). We
claim that j(r) = (1−r, r−1). For the base case r = 0, note that deg j = (1,−1) = (1−r, r−
1), which means that the 0-th differential has bidegree deg d = deg jk = (0,−1) = (−r, r−1).
Now suppose that

deg j(r−1) = (2− r, r − 2),

so that deg d(r−1) = (1−r, r−2) = (−(r−1), (r−1)−1). We can easily check that our base
case r− 1 = 0 satisfies this condition. Suppose j(r)(i(r−1)(x)) = [j(r−1)(x)] is an element of
Er

p,q, then by our inductive hypothesis and the fact that deg i(r−1) = deg i = (1,−1), this
element must have come from

i(r−1)(Dp+r−2,q−r+2) = Dp+r−1,q−r+1.

Thus deg j(r) = (1 − r, r − 1), which implies deg d(r) = deg j(r)k(r) = deg j(r) + deg k =
(−r, r − 1), as desired.



Example 1 (Bockstein Spectral Sequence). Suppose C is a torsion-free complex over Z,
meaning that no element in C has finite order except the identity. Now consider the short
exact sequence

0 Z Z Zp 0.
p mod p

We can take the tensor product with C, using the fact that the tensor product of a module and
its base ring is isomorphic to the original module, to produce another short exact sequence

0 C C C ⊗ Zp 0.
p mod p

Note that the exactness of this sequences follows from C being torsion-free, since this forces
the p map to be injective and the mod p map to be surjective.

Since each element of this sequence is a complex, we can construct a long exact sequence
of homologies using Theorem 1.

· · · Hn(C) Hn(C) Hn(C ⊗ Zp) Hn−1(C) · · ·i j k

We can make each homology bigraded with H∗( · )p,q
.
= Hp+q( · ), which then shows

deg i = (1,−1), deg j = (1,−1), deg k = (−1, 0).

Then the long exact sequence below induces a spectral sequence by Theorem 2.

H∗(C) H∗(C)

H∗(C ⊗ Zp)

This induced spectral sequence is called the Bockstein spectral sequence.

5 FILTERED COMPLEXES

Filtered complexes are a natural decomposition of complexes that give rise to exact couples,
and thus also induce spectral sequences. Suppose C is a complex of R-modules, then a
filtration of C is a sequence

· · · ⊂ Fp−1C ⊂ FpC ⊂ Fp+1C ⊂ · · · ⊂ C

of subcomplexes FpC of C. This induces a filtration on each module of C as well. Just
define FpCn = FpC ∩Cn. This gives us a bigrading on our complex that will be vital in the
proof of Theorem 3.

Definition 3. We say that C if a filtered complex if there is some filtration F on C that
the differential of C respects, i.e. d(FpCn) ⊂ FpCn−1 for all n.

A filtration is bounded if it only has a finite number of layers: for all n, there are numbers
s(n), t(n) such that Fs(n)Cn = 0 and Ft(n)Cn = Cn. If a filtration satisfies F−1Cn = 0 and



FnCn = Cn for all n, we call it the canonically bounded filtration. We visualize this particular
filtration below.

FnC = C : · · · C2 C1 C0 0

...
...

...
...

...

F1C : · · · F1C2 C1 C0 0

F0C : · · · F0C2 F0C1 C0 0

F−1C : · · · 0 0 0 0

⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂

Note that each layer of any filtration is intertwined with all others below it, but we would
like to be working with disjoint parts. To do this, we can simply take quotients: define the
associated graded complex E0C componentwise by

E0
p,qC

.
= FpCp+q/Fp−1Cp+q.

Since d respects the filtration, this has its own differential induced by that of C. Our
filtration on C also induces a filtration on the homology of C by

FpHp+q(C)
.
= FpH∗(C) ∩Hp+q(C).

To show that filtered complexes give rise to spectral sequences, we construct an exact
couple from C. Our filtration levels of C and their respective quotients fit into a natural
short exact sequence of complexes

0 → Fp−1C ↪→ FpC ↠ E0
pC → 0,

where the two intermediate maps are the canonical inclusion and projection maps, respec-
tively. The associated long exact sequence of homologies is then

· · · → Hn(Fp−1C)
i→ Hn(FpC)

j→ Hn(E
0
pC)

k→ Hn−1(Fp−1C) → · · · .

Then letting Dp,q
.
= Hp+q(FpC) and Ep,q

.
= Hp+q(E

0
pC), we can form an exact couple

(D,E, i, j, k). For p+ q = n, the above long exact sequence can be written

· · · → Dp−1,q+1
i→ Dp,q

j→ Ep,q
k→ Dp−1,q → · · ·

which shows that i, j, k have the bidegrees from Theorem 2. This means that our exact
couple determines a spectral sequence, so we can always build a spectral sequence from any
filtered complex.

6 CONVERGENCE OF SPECTRAL SEQUENCES

Now that we’ve determined ways to construct spectral sequences, we can begin to endow our
limiting terms E∞

p,q with meaning. In particular, the limiting terms of a spectral sequenced



induced by a filtered complex C capture significant information about the homology H∗(C)
of C.

Definition 4. Suppose C is some chain complex. A spectral sequence E is said to converge
to H∗(C) if there is some filtration on C such that

E∞
p,q

∼= FpHp+q(C)/Fp−1Hp+q(C).

Note that a single E∞
p,q term only gives some of the information about Hp+qC. If we

want as much information as possible about some Hn(C), we need to examine all E∞
p,q such

that p+ q = n. In the special case that our filtration is canonically bounded and C is finite
dimensional, we recover the quotients

F0Hn(C), F1Hn(C)/F0Hn(C), · · · Hn(C)/Fn−1Hn(C).

We can then construct Hn(C) by simply taking the direct sum of all these quotients:

Hn(C) ∼=
⊕

p+q=n

E∞
p,q.

As a visual example, the highlighted terms in the following grid are the limiting terms we
would use to determine H3(C).

E∞
0,3 E∞

1,3 E∞
2,3 E∞

3,3

E∞
0,2 E∞

1,2 E∞
2,2 E∞

3,2

E∞
0,1 E∞

1,1 E∞
2,1 E∞

3,1

E∞
0,0 E∞

1,0 E∞
2,0 E∞

3,0

We have now seen that, at least in the case that each Cn is finite dimensional and F
is bounded, this convergence property allows us to determine homologies of our complex C
up to isomorphism. Even if C and F were not so simple, having a sequence of quotients of
H(C) gives great insight into the structure of H(C); however, it remains to be seen under
which conditions a filtered complex’s induced spectral sequence will converge. As it turns
out, having a bounded filtration is all we need to guarantee convergence.

Before proving this, we’ll need a bit of setup. We’ll start by considering the map d on
a filtered complex C. As noted earlier, we can use our filtration to give a bigrading on our



complex. We can visualize this as

...
...

...

· · · Fp+1Cp+q+1 Fp+1Cp+q Fp+1Cp+q−1 · · ·

· · · FpCp+q+1 FpCp+q FpCp+q−1 · · ·

· · · Fp−1Cp+q+1 Fp−1Cp+q Fp−1Cp+q−1 · · ·

...
...

...

⊂ ⊂ ⊂

⊂ ⊂ ⊂

where the arrows represent the differential d and its restrictions to the various levels of its
range. Every element in this grid should have arrows attached to them, but only two sets
of arrows are shown to reduce clutter. Also note that d cannot send elements “up” the grid
since it respects the filtration by assumption.

To construct a spectral sequence from all this, we can construct the associated graded
module E0 and take homologies to gain E1, E2, etc., using d to induce endomorphisms dr

on each page Er. Intuitively, each dr corresponds to the restriction of d sending elements
down r levels. In the proof of Theorem 3, we will construct these maps explicitly. An effect
of our indexing convention is that our grid will become “skewed” once we start working with
the Er pages. The result is that while the restrictions of d on the original filterex complex
have bidegrees of the form (1,−r), each dr will have bidegree (−r, r − 1). This motivates
the definition of a homological spectral sequence, in which we required the bidegrees of each
dr to be (−r, r − 1).

For example, the E0 page will have differentials with bidegree (0,−1), as visualized
below.

...
...

...

· · · E0
p−1,q+1 E0

p,q+1 E0
p+1,q+1 · · ·

· · · E0
p−1,q E0

p,q E0
p+1,q · · ·

· · · E0
p−1,q−1 E0

p,q−1 E0
p+1,q−1 · · ·

...
...

...

The two arrows in this diagram correspond to the two sets of arrows in the diagram of the
original filtered complex. As we go to higher pages, the arrows will extend up and to the left
as an effect of their bidegree. In the below diagram, we visualize the first few dr originating



from the same (p, q)-th component of each page.

• • • •

• • • •

• • • •

• • • •
d0

d1

d2

d3

Theorem 3. Suppose C is a filtered complex with bounded filtration F , then the induced
spectral sequence E converges to H∗(C), i.e.

E∞
p,q

∼= FpHp+q(C)/Fp−1Hp+q(C).

Proof. We begin with a few definitions. Suppose our filtered complex is

· · · → Cn+1 → Cn → Cn−1 → · · ·

with differential d. Since its given filtration F is bounded, we know that for all n, we can
find s(n) and t(n) such that

Fs(n)Cn = 0, Ft(n)Cn = Cn.

Define Zr
p,q as the elements of FpCp+q that are mapped r “levels” down by d, and define

Br
p,q as the elements of FpCp+q that came from r levels up. Explicitly,

Zr
p,q

.
= FpCp+q ∩ d−1(Fp−rCp+q−1),

Br
p,q

.
= FpCp+q ∩ d(Fp+rCp+q+1).

The limiting case of both of these is straightforward (and also a more familiar use of the
letters Z and B). Define

Z∞
p,q

.
= Ker d ∩ FpCp+q,

B∞
p,q

.
= Im d ∩ FpCp+q.

Because of the filtration’s structure as a collection of subsets, we get the following sequence
of inclusions.

B0
p,q ⊂ B1

p,q ⊂ · · · ⊂ B∞
p,q ⊂ Z∞

p,q ⊂ · · · ⊂ Z1
p,q ⊂ Z0

p,q

Because our filtration is bounded, we get the useful computational property that we will
actually reach Z∞

p,q and B∞
p,q after some finite number of inclusions in the sequence above.

To see this, note that for r > max {s(p+ q + 1)− p, p− t(p+ q − 1)}, the component to the
left of and r levels above FpCp+q is just Cp+q+1 and the component to the right of and r
levels below FpCp+q is just 0. Thus for this particular r (and all larger values), Zr

p,q = Z∞
p,q

and Br
p,q = B∞

p,q.
With this setup out of the way, we can begin the actual proof. We will first explicitly

construct a homological spectral sequence induced by our filtered complex C, then show
that its limiting terms approach the desired quotients of H∗(C). We divide this process into
four main steps.



Part I: Constructing the pages and differentials. The 0-th page of our sequence
will just be the associated graded complex E0 given by

E0
p,q = FpHp+q(C)/Fp−1Hp+q(C).

Now for r ≥ 1, recursively define

Er
p,q =

Zr
p,q

Zr−1
p−1,q+1 +Br−1

p,q

.

We now show that d induces endomorphisms dr on each Er. Note that since the elements
of Zr

p,q are mapped down r levels in our filtration,

d(Zr
p,q) ⊂ Br

p−r,q+r−1.

Then by our tower of Z and B inclusions,

d(Zr
p,q) ⊂ Zr

p−r,q+r−1

and

d(Zr−1
p−1,q+1 +Br−1

p,q ) = d(Zr−1
p−1,q+1) + d(Br−1

p,q )

⊂ Br−1
p−r,q+r−1 + 0

⊂ Br−1
p−r,q+r−1 + Zr−1

p−r−1,q+r.

Thus our original differential d induces a well-defined map

dr : Er
p,q → Er

p−r,q+r−1.

Note that dr has bidegree (−r, r − 1), as desired.
Part II: Showing that each page is the homology of the previous page. Now

that we have defined our pages and differentials, we must show Er+1
p,q

∼= H(Er
p,q) in order

for this to define a spectral sequence.
Suppose η is the natural projection

Zr
p,q

Er
p,q

η

then Ker dr = η(Zr+1
p,q ). Additionally,

η−1(Im dr) = Br
p,q + Ker η

= Br
p,q +Br−1

p,q + Zr−1
p−1,q+1

= Br
p,q + Zr−1

p−1,q+1,

where the last equality follows from our tower of B and Z inclusions giving Br−1
p,q ⊂ Br

p,q.
This then means

Zr+1
p,q ∩ η−1(Im dr) = Zr+1

p,q ∩ (Br
p,q + Zr−1

p−1,q+1)

= Zr
p−1,q+1 +Br

p,q.



Thus we get that the homology of Er
p,q is

H(Er
p,q)

∼= Zr+1
p,q /

(
Br

p,q + Zr−1
p−1,q+1

)
= Er+1

p,q .

Part III: Constructing the desired isomorphism. Throughout this part of the
proof, we will implicitly use the fact that since E∞

p,q is achieved after a finite number of
pages, it is in fact just Er

p,q for some r. This means we can use all our definitions from the
previous two parts of the proof without worry. Also note that we can do the same for Z∞

p,q

and B∞
p,q.

We claim that d induces a map between E∞
p,q and FpHp+q(C)/Fp−1Hp+q(C). Suppose

η and π are the following natural projections.

Z∞
p,q Ker d

E∞
p,q Hp+q(C)

η π

Then since
FpHp+q(C) = π(FpCp+q ∩ Ker d) = π(Z∞

p,q),

π induces a surjective map Z∞
p,q ↠ FpHp+q(C). Also, by the definition of Er

p,q,

π(Ker η) = π(Z∞
p−1,q+1 +B∞

p,q) = Fp−1Hp+q(C),

so π induces a surjective map Z∞
p−1,q+1 + B∞

p,q ↠ Fp−1Hp+q(C). We then have an induced
surjection

d∞ : E∞
p,q ↠ FpHp+q(C)/Fp−1Hp+q(C).

We claim that d∞ is also injective. Since the kernel of d∞ is all elements of E∞
p,q that get

mapped to Fp−1Hp+q(C), we can express it in terms of η and π by

Ker d∞ = η
(
π−1 (Fp−qHp+q(C)) ∩ Z∞

p,q

)
= η

(
Z∞
p−1,q+1 ∩ d(C) ∩ Z∞

p,q

)
⊂ η

(
Z∞
p−1,q+1 +B∞

p,q

)
= 0,

where the last equality follows from the definition of Er
p,q. Thus d∞ is the isomorphism that

shows
E∞

p,q
∼= FpHp+q(C)/Fp−1Hp+q(C).

Hence the spectral sequence induced from C converges to H∗(C).

Example 2 (Homology of the 3-Sphere). With a bit of extra information, it’s possible to
calculate the homology of S3 using the homologies of S1 and S2. We use the following
theorem on the existence of the “Serre” spectral sequence without proof.

Theorem 4. Suppose F → X → B is a fibration with B a path-connected space. If π1(B)
acts trivially on H∗(F ), then there is a spectral sequence with

E2
p,q

∼= Hp(B;Hq(F )),

where the limiting terms E∞
p,q are isomorphic to successive quotients of Hp+q(X).



We will also need the following special case of the Hurewicz theorem.

Lemma 2. Given a path connected topological space X, the abelianization of π1(X) is
isomorphic to H1(X).

Finally, we assume that the homologies of S1 and S2 are known to be

Hk(S
1) =

{
Z k = 0, 1

0 otherwise

Hk(S
2) =

{
Z k = 0, 2

0 otherwise
,

and we assume the existence of the Hopf fibration S1 → S3 → S2. We now have enough
tools to calculate H∗(S

3). Note that since S3 is simply connected, π1(S
3) must act trivially,

so by Theorem 4 we can construct the Serre spectral sequence for S3 using the Hopf fibration.
This gives the second page E2 componentwise by

E2
p,q = Hp(S

2;Hq(S
1)).

When q = 0, 1, Hq(S
1) = Z, so the homology of S2 is computed using the usual coefficients.

Otherwise, we’re working with trivial coefficients. Similarly, when p = 0, 2, Hp(S
2;Z) = Z,

and otherwise it’s 0. Thus the only nontrivial portion of the E2 page is

1 Z 0 Z
0 Z 0 Z

0 1 2
.

Since differentials on the E2 page have bidegree (−2, 1), there is only one nontrivial differ-
ential.

Z 0 Z

Z 0 Z

d

Since S3 is simply connected, π1(S
3) is trivial, and then so is its abelianization. Then by

Lemma 2, H1(S
3) ∼= 0. This forces the top-left Z to become 0 after taking homology, so d

must be surjective. Now since d is necessarily a homomorphism, Z is generated by d(1). We
must then have d(1) = ±1 in order for d to be surjective, so then any nonzero n is mapped
to ±n. Thus Ker d is trivial, so d is injective and the homology of the bottom-right Z must
subsequently also be 0. Since all other entries have stabilized already, the third page of our
spectral sequence is

1 0 0 Z
0 Z 0 0

0 1 2
.

At this point, all differentials are trivial, so all the terms on the third page are in fact the
limiting terms E∞

p,q. To recover Hn(S
3), we can take the direct sum over diagonals satisfying

p+ q = n. Doing so gives

Hn(S
3) =

{
Z n = 0, 3

0 otherwise
.
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